

Pasta: A Case for Hybrid Homomorphic Encryption

Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger, Markus Schofnegger, Roman Walch

12.09.2023

Homomorphic Use Cases

Homomorphic Use Cases

Hybrid Homomorphic Encryption

- Homomorphic ciphertext are orders of magnitude larger then plaintext
 - e.g., 7.4 MB for \leq 250 kB
- Solution:
 - Send data encrypted using symmetric ciphers
 - Ciphertexts have same size as plaintexts
 - Homomorphically decrypt data before use case
- \Rightarrow No ciphertext expansion

Hybrid HE Use Cases

Hybrid HE Use Cases

Hybrid Homomorphic Encryption (cont.)

- Server evaluates symmetric decryption circuit before use case
 - Contributes to multiplicative depth of homomorphic computation
 - Without bootstrapping:
 - Shallow decryption circuit required
 - Requires more noise budget
 - ⇒ Slower runtime
 - ⇒ traditional ciphers (e.g., AES) not well suited
- ⇒ Tradeoff: data transmission vs. server runtime
 - Usable for constrained clients in slow networks!

Ciphers for HHE

A Zoo of Ciphers for HHE

A Zoo of Ciphers for HHE

Inefficiency of \mathbb{Z}_2 ciphers

- So far all ciphers over \mathbb{Z}_2
 - Good for binary use cases
- Not ideal otherwise:
 - Less throughput compared to \mathbb{Z}_p
 - No homomorphic conversion from \mathbb{Z}_2 to \mathbb{F}_p in BGV/BFV
 - Use case afterwards in \mathbb{Z}_2
 - Binary circuits for integer arithmetic
- \Rightarrow Focus on ciphers over \mathbb{F}_p
- Our approach: Pasta
 - First public release: June 2021

Inefficiency of \mathbb{Z}_2 ciphers

- So far all ciphers over \mathbb{Z}_2
 - Good for binary use cases
- Not ideal otherwise:
 - Less throughput compared to \mathbb{Z}_p
 - No homomorphic conversion from \mathbb{Z}_2 to \mathbb{F}_p in BGV/BFV
 - Use case afterwards in \mathbb{Z}_2
 - Binary circuits for integer arithmetic
- \Rightarrow Focus on ciphers over \mathbb{F}_p
- Our approach: Pasta
 - First public release: June 2021

Pasta

Design Goals

- Cipher over \mathbb{F}_p
- Low multiplicative depth
 - Minimize number of rounds
 - Minimize depth per round
 - ⇒ Large statesize
- Optimize for packing in BFV/BGV
 - Fast homomorphic evaluation time despite large statesize

Background: The RASTA Design Strategy

- Stream-Cipher
- Affine transformation:
 - XOF seeded with *N*, *i*
 - Random invertible matrices
 - Random round constants
- Masta: Direct translation to \mathbb{Z}_p

The Pasta Design Strategy – Linear Layer

Linear layer:

$$\begin{bmatrix} \vec{y}_L \\ \vec{y}_R \end{bmatrix} = \begin{bmatrix} 2 \cdot I & I \\ I & 2 \cdot I \end{bmatrix} \times \begin{bmatrix} A_{i,L}(\vec{x}_L) \\ A_{i,R}(\vec{x}_R) \end{bmatrix}$$

■ ... with random *A_j*

Reminder Packing

- Packing:
 - Encode a vector of integers into polynomials
 - Homomorphic additions/multiplication ⇒ slotwise vector operations
 - Vector rotations via galois automorphisms
- BSGS optimized diagonal method for matrix-vector multiplication
 - $M \cdot \vec{x}$ on packed \vec{x} using rotations
- Rotations in rings modulo $(X^N + 1)$ with $N = 2^n$

Reminder Packing

- Packing:
 - Encode a vector of integers into polynomials
 - Homomorphic additions/multiplication ⇒ slotwise vector operations
 - Vector rotations via galois automorphisms
- BSGS optimized diagonal method for matrix-vector multiplication
 - $M \cdot \vec{x}$ on packed \vec{x} using rotations
- Rotations in rings modulo $(X^N + 1)$ with $N = 2^n$

$$\begin{bmatrix} \vec{X}_L \\ \vec{X}_R \end{bmatrix} \overset{\mathsf{encode}}{\to} X \in R_\rho : \qquad \tau_{3^i}(X) \overset{\mathsf{decode}}{\to} \begin{bmatrix} \mathtt{rot}_i(\vec{X}_L) \\ \mathtt{rot}_i(\vec{X}_R) \end{bmatrix}, \qquad \tau_{N-1}(X) \overset{\mathsf{decode}}{\to} \begin{bmatrix} \vec{X}_R \\ \vec{X}_L \end{bmatrix},$$

Efficient Homomorphic Pasta Implementation – Linear Layer

- Pasta in power-of-two cyclotomic rings:
 - Parallelize evaluation of $A_{j,L}$ and $A_{j,R}$

$$\begin{bmatrix} \vec{y}_L \\ \vec{y}_R \end{bmatrix} = \begin{bmatrix} A_{j,L}(\vec{x}_L) \\ A_{j,R}(\vec{x}_R) \end{bmatrix}$$

Mixing:

$$\begin{bmatrix} \vec{y}_L \\ \vec{y}_R \end{bmatrix} = \begin{bmatrix} 2 \cdot I & I \\ I & 2 \cdot I \end{bmatrix} \cdot \begin{bmatrix} \vec{x}_L \\ \vec{x}_R \end{bmatrix} = \begin{bmatrix} \vec{x}_L \\ \vec{x}_R \end{bmatrix} + \begin{bmatrix} \vec{x}_L \\ \vec{x}_R \end{bmatrix} + \begin{bmatrix} \vec{x}_R \\ \vec{x}_L \end{bmatrix},$$

 \Rightarrow Cost reduced from $(2t \times 2t)$ to $(t \times t)$ matrix-vector multiplication

Efficient Homomorphic Pasta Implementation – Linear Layer

- Pasta in power-of-two cyclotomic rings:
 - Parallelize evaluation of $A_{j,L}$ and $A_{j,R}$

$$\begin{bmatrix} \vec{y}_L \\ \vec{y}_R \end{bmatrix} = \begin{bmatrix} A_{j,L}(\vec{x}_L) \\ A_{j,R}(\vec{x}_R) \end{bmatrix}$$

Mixing:

$$\begin{bmatrix} \vec{y}_L \\ \vec{y}_R \end{bmatrix} = \begin{bmatrix} 2 \cdot I & I \\ I & 2 \cdot I \end{bmatrix} \cdot \begin{bmatrix} \vec{x}_L \\ \vec{x}_R \end{bmatrix} = \begin{bmatrix} \vec{x}_L \\ \vec{x}_R \end{bmatrix} + \begin{bmatrix} \vec{x}_L \\ \vec{x}_R \end{bmatrix} + \begin{bmatrix} \vec{x}_R \\ \vec{x}_L \end{bmatrix},$$

 \Rightarrow Cost reduced from (2t \times 2t) to (t \times t) matrix-vector multiplication

The Pasta Design Strategy – S-box

- Feistel-like S-box:
 - Low-degree ⇒ low depth

$$[S'(\vec{x})]_i = \begin{cases} x_0 & \text{if } i = 0 \\ x_i + (x_{i-1})^2 & \text{else} \end{cases}$$

- Cube S-box:
 - Higher degree
 - Only last round

$$S(x) = x^3$$

Pasta vs. Masta

- Pasta has fewer rounds for same keystream words
 - ...also scales better with rounds

Instance	Rounds	# Key Words	# Plain/Cipher Words
Pasta-3	3	256	128
Pasta-4	4	64	32
Masta-4	4	128	128
Masta-5	5	64	64

Table: 128 bit security instances of Pasta and Masta.

Benchmarks

Benchmarking Framework

- Hybrid Homomorphic Encryption Framework
 - Extensive benchmarks in different HE libraries
 - lacksquare SEAL, HElib for \mathbb{Z}_2 and \mathbb{F}_p
 - (Original) TFHE for \mathbb{Z}_2
 - https://github.com/IAIK/hybrid-HE-framework
- Benchmarks
 - Homomorphic evaluation of decryption circuit
 - HHE with use case evaluation
 - More meaningful benchmarks!
- ⇒ Used by many followup designs

Use Cases

- \blacksquare \mathbb{Z}_2 ciphers:
 - Binary circuits for integer use cases
 - Large multiplicative depth!
- Example: Small linear regression
 - 5×5 Matrix-vector multiplication with 16-bit integers
 - Already shows inefficiency of \mathbb{Z}_2 ciphers

HHE with Small Linear Regression Use Case

HHE with Small Linear Regression Use Case

\mathbb{F}_p ciphers

- PASTA (and MASTA/HERA) make larger integer use cases possible!
- Larger use case in paper
 - 3 Affine layers (200 integers mod p)
 - Interleaved by elementwise squaring
 - Benchmarked in 3 primes fields (17-bit, 33-bit, 60-bit)
- ⇒ Benchmarks show: Pasta outperforms Masta/Hera!
 - Pasta runtime: 120 s for 17 and 33-bit prime
 - More details in paper

Conclusion

- Hybrid Homomorphic Encryption:
 - Tradeoff: Client upload size vs server runtime
- Our paper:
 - First time investigation of tradeoffs on client side
 - Extensive benchmarks (inclusive use cases)
 - Pasta: Optimized HHE cipher over \mathbb{F}_p
 - https://eprint.iacr.org/2021/731.pdf
- Extensive benchmarks in different HE libraries including use cases
 - Framework: https://github.com/IAIK/hybrid-HE-framework

Questions ?

Pasta: A Case for Hybrid Homomorphic Encryption

Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger, Markus Schofnegger, Roman Walch

12.09.2023