
S C I E N C E
P A S S I O N

T E C H N O L O G Y

RCp:
Fast Arithmetization-Friendly Hashing
Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger,
Christian Rechberger, Markus Schofnegger, RomanWalch

23.04.2023

www.iaik.tugraz.at

PONOS

Domain Specific Symmetric Primitives

Modern cryptographic protocols

ZKP: Hash functions in Computational Integrity Proof Systems
MPC: Multiple parties jointly compute a function on private input
HE: Compute on encrypted data

Symmetric Primitives are useful in these protocols

... but have different design criteria:

Prime fields
Minimizing multiplicative complexity/depth

⇒ Many new primitives designed
1 / 23

Domain Specific Symmetric Primitives

Modern cryptographic protocols

ZKP: Hash functions in Computational Integrity Proof Systems
MPC: Multiple parties jointly compute a function on private input
HE: Compute on encrypted data

Symmetric Primitives are useful in these protocols

... but have different design criteria:

Prime fields
Minimizing multiplicative complexity/depth

⇒ Many new primitives designed
1 / 23

Computational Integrity Proof Systems

Prove that something has been computed correctly

Program, hash function, Merkle-tree
Potentially with zero-knowledge

Many use cases involve hash functions

Arithmetization

Convert program to proof system representation
Traditional hash functions often have inefficient representation

⇒ New hash functions:

POSEIDON, Rescue, GRIFFIN, Reinforced Concrete, ...
2 / 23

Design Criteria

Depends on proof system

Low number of multiplication (e.g., R1CS, Plonk)
Low-degree representation and low-depth (e.g, AIR)
Low number of additions (e.g., original Plonk)

Recently:

Support for lookup tables

Use cases:

Plain performance often bottleneck!

3 / 23

Symmetric Function Concepts in the Past

Type 1
"low degree only"

Low-degree

y = xd

Fast in Plain

Many rounds

Often more constraints

POSEIDON, Poseidon2,
NEPTUNE, GMiMC

Type 2
"non-procedural", “fluid"

Low-degree equivalence

y = x1/d ⇒ x = yd

Slow in Plain

Fewer rounds

Fewer constraints

Rescue, GRIFFIN, ANEMOI

Type 3
"lookups"

Lookup tables

y = T[x]

Very fast in Plain

Even fewer rounds

Constraints depend on
proof system

Reinforced Concrete,
Tip5

4 / 23

Symmetric Function Concepts in the Past

Type 1
"low degree only"

Low-degree

y = xd

Fast in Plain

Many rounds

Often more constraints

POSEIDON, Poseidon2,
NEPTUNE, GMiMC

Type 2
"non-procedural", “fluid"

Low-degree equivalence

y = x1/d ⇒ x = yd

Slow in Plain

Fewer rounds

Fewer constraints

Rescue, GRIFFIN, ANEMOI

Type 3
"lookups"

Lookup tables

y = T[x]

Very fast in Plain

Even fewer rounds

Constraints depend on
proof system

Reinforced Concrete,
Tip5

4 / 23

Symmetric Function Concepts in the Past

Type 1
"low degree only"

Low-degree

y = xd

Fast in Plain

Many rounds

Often more constraints

POSEIDON, Poseidon2,
NEPTUNE, GMiMC

Type 2
"non-procedural", “fluid"

Low-degree equivalence

y = x1/d ⇒ x = yd

Slow in Plain

Fewer rounds

Fewer constraints

Rescue, GRIFFIN, ANEMOI

Type 3
"lookups"

Lookup tables

y = T[x]

Very fast in Plain

Even fewer rounds

Constraints depend on
proof system

Reinforced Concrete,
Tip5

4 / 23

Goal

New Hash function:

Efficient plain performance
Implementable without lookup tables to resist side-channel attacks

Efficient proof system representation

Focus on FRI-based proof systems

Prime-field with fast modular reductions!
Particular: p = 264 − 232 + 1

Allows lookup arguments for less constraints

⇒ RCp (with p = 264 − 232 + 1)

5 / 23

RCp

�

Reinforced Concrete

First arithmetization friendly hash function
optimized for lookup tables

3 types of layer:

Concrete: Linear mixing
Bricks: Arithmetic non-linear layer
Bars: Decomposition and lookup table

Lookup represents repeated (x + a)d

Security:

One Bars layer for algebraic security
6 Concrete/ Bricks for statistical security

C O N C R E T E

C O N C R E T E

C O N C R E T E

C O N C R E T E

B A R S

C O N C R E T E

C O N C R E T E

C O N C R E T E

B R I C K S

C O N C R E T E

R
eb

o
u
n
d
-secu

re

A
lgeb

raic-secu
re

B R I C K S

B R I C K S

B R I C K S

B R I C K S

B R I C K S

6 / 23

Reinforced Concrete (cont.)

Faster than any previously published arithmetization oriented hash function

When using lookup tables

But still significantly slower than, e.g., SHA-3

Problems:

Fixed statesize t = 3
⇒ large prime fields (log2(p) = 256)

Decomposition is slow and difficult to generalize
Arithmetic function in lookup table

Slow without lookup table
Only efficient in proof systems with lookup tables

7 / 23

The RCp Permutation

Let statesize t ≥ 8, t = 4 · t′, one round is given as:

x0

y0

x1

y1

· · ·

· · ·

xt−1

yt−1

S S S S S S S S · · · S S S SBars

x2 x2 x2· · ·Bricks


2 · M4 M4 . . . M4

M4 2 · M4 . . . M4
...

...
. . .

...
M4 M4 . . . 2 · M4

×


x0
x1
...

xt−1

+


c0
c1
...

ct−1

Concrete

8 / 23

Bricks

Arithmetic non-linear layer constructed from a quadratic Feistel

Bricks(x0, x1, . . . , xt−1) := (x0, x1 + x2
0, x2 + x2

1, . . . , xt−1 + x2
t−2).

x2 x2 x2· · ·Bricks

Cheap in plain

Cheap in proof systems

Small number of multiplication, low-degree polynomials

Good statistical properties (x2 has DPmax = 1/p)
9 / 23

Concrete

Affine layer M · x + c(i)

Matrix used in GRIFFIN [GHR+22]

M = circ(2 · M4,M4, . . . ,M4) ∈ Ft×t
p ,

=


2 · M4 M4 . . . M4

M4 2 · M4 . . . M4
...

M4 M4 . . . 2 · M4


. . .where M4 is a 4 × 4 MDS matrix

10 / 23

Concrete (cont.)

Matrix very cheap in plain

M4 computable by few additions only
Also true for full matrix M

Good statistical properties:

Branch number is t/4 + 4

⇒ Together with Bricks provides statistical
security

M4 =


5 7 1 3
4 6 1 1
1 3 5 7
1 1 4 6



11 / 23

Bars

Binary non-linear layer

Decompose → S-box → Compose

Decomposition / Composition

x ⇔ 248x3 + 232x2 + 216x1 + x0

. . . i.e., split into 16-bit words

χ-like S-box: y = S(x):

S(x) = x ⊕
(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

)
,

⇒ Provides algebraic security

S S S S

12 / 23

Bars

Binary non-linear layer

Decompose → S-box → Compose

Decomposition / Composition

x ⇔ 248x3 + 232x2 + 216x1 + x0

. . . i.e., split into 16-bit words

χ-like S-box: y = S(x):

S(x) = x ⊕
(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

)
,

⇒ Provides algebraic security

S S S S

12 / 23

Bars

Binary non-linear layer

Decompose → S-box → Compose

Decomposition / Composition

x ⇔ 248x3 + 232x2 + 216x1 + x0

. . . i.e., split into 16-bit words

χ-like S-box: y = S(x):

S(x) = x ⊕
(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

)
,

⇒ Provides algebraic security

S S S S

12 / 23

Bars (cont.)

Binary S-box in Fp hash function

Cheap in proof system due to lookup table
Cheap in plain due to fast vectorized implementation
Provides good algebraic properties

Well-defined over Fp?

p = 264 − 232 + 1: p − 1 = 0xFFFF FFFF 0000 0000

If S(0xFFFF) = 0xFFFF and S(0x0000) = 0x0000:

Bars(p − 1) = p − 1
Bars(x) < p − 1 ∀x ∈ Fp < p − 1
. . .since nothing except 0xFFFF can map to 0xFFFF

13 / 23

Bars (cont.)

Binary S-box in Fp hash function

Cheap in proof system due to lookup table
Cheap in plain due to fast vectorized implementation
Provides good algebraic properties

Well-defined over Fp?

p = 264 − 232 + 1: p − 1 = 0xFFFF FFFF 0000 0000

If S(0xFFFF) = 0xFFFF and S(0x0000) = 0x0000:

Bars(p − 1) = p − 1
Bars(x) < p − 1 ∀x ∈ Fp < p − 1
. . .since nothing except 0xFFFF can map to 0xFFFF

13 / 23

Security Analysis
�

(Work in progress)

Algebraic Properties of Bars

Ideally: Bars represented by dense and high-degree polynomials

Experiments on smaller, similar primes with p = 2n − 2m + 1:

Bars provides maximum degree (≈ 2n)
Density of polynomials > 99%

⇒ 2 Bars for dense polynomials with degree 2128 with p ≈ 264

⇒ 4 Bars required for Meet-in-the-middle attacks

Lower bounds proven in paper

Bars has degree ≥ 257 over Fp

Bars −1 has degree ≥ 247 over Fp

⇒ 6 Bars more than enough
14 / 23

Algebraic Properties of Bars

Ideally: Bars represented by dense and high-degree polynomials

Experiments on smaller, similar primes with p = 2n − 2m + 1:

Bars provides maximum degree (≈ 2n)
Density of polynomials > 99%

⇒ 2 Bars for dense polynomials with degree 2128 with p ≈ 264

⇒ 4 Bars required for Meet-in-the-middle attacks

Lower bounds proven in paper

Bars has degree ≥ 257 over Fp

Bars −1 has degree ≥ 247 over Fp

⇒ 6 Bars more than enough
14 / 23

Statistical Attacks

We just consider Concrete and Bricks

Differential attacks:

Each active x 7→ x2 map has DPmax = 1/p
Main issue: x0 7→ x0 in Bricks

We show that two consecutive rounds have DP≤ p−t/8−1/2

⇒ 6 rounds have DP≤ 2−256 (for t ≥ 8)

Other attacks:

Rebound attack, truncated differential attacks, . . .
Work in progress...

15 / 23

Statistical Attacks

We just consider Concrete and Bricks

Differential attacks:

Each active x 7→ x2 map has DPmax = 1/p
Main issue: x0 7→ x0 in Bricks

We show that two consecutive rounds have DP≤ p−t/8−1/2

⇒ 6 rounds have DP≤ 2−256 (for t ≥ 8)

Other attacks:

Rebound attack, truncated differential attacks, . . .
Work in progress...

15 / 23

Security Analysis (cont.)

Open points:

Full statistical analysis
Analysis/experiments for Gröbner basis attacks

Preliminary Number of Rounds:

Security (bits) r

80 7
128 8
196 10
256 12

16 / 23

Performance
¢

Modes of operation

2:1 compression:

t = 8 is sufficient!
E.g., for Merkle-tree with
fixed depth

General purpose hashing:

Use a sponge t >= 12
4 words for capacity

P

m1 m2

h

IV

m1

P

m2

P

m3

P

m4

· · ·

· · ·

P

h1

P

h2

17 / 23

Performance Summary

Used prime field allows cheap/fast modular reduction

Only 2t − 1 modular reductions per round

Before Bars
After squares in Bricks

Bars efficiently vectorizable without lookup tables

Cheap side channel resistant implementation possible
Use lookup tables in proof system

Concrete chosen to minimize number of additions

No multiplications required!
18 / 23

Plain Performance (for 8 Rounds)

Table: Plain performance comparison implemented in Rust.

Hashing algorithm Time (ns)
t = 8 t = 12

RCp 147.6 237.5
Tip5 (t = 16) 487.0
Tip4′ - 252.0
POSEIDON 2011.2 3510.5
Poseidon2 973.0 1361.8

Reinforced Concrete (BN254, t = 3) 1467.1
SHA3-256 189.8
SHA-256 45.3

Concrete 17.8 29.2
Bricks 14.4 22.5
Bars 12.2 16.9

19 / 23

Constant Time Performance (for 8 Rounds)

Resisting side-channel attacks is important, even in ZK use cases

E.g., recently shown at Usenix by [TBP20]

Benchmarks when replacing fast modular reduction with constant time one:

Hashing algorithm Time (ns)
t = 8 t = 12

RCp 358.1 535.9
POSEIDON 4135.0 6960.4
Poseidon2 2011.0 2695.5

Concrete 34.6 50.1
Bricks 17.7 29.6
Bars 12.2 20.0

Unrolling S-box for Reinforced Concrete, Tip5, Tip4 ′ likely very expensive 20 / 23

Proof System Performance - Plonkish

Bricks:

t − 1 polynomial constraints of degree 2

Bars:

Decompostion: t linear constraints
4t lookup constraints for S(x)
2t polynomial constraints (degree 2) to ensure decompositions are ∈ Fp

Total for R rounds:

4tR lookup constraints
tR linear constraints
3tR polynomial constraints of degree 2

21 / 23

Proof System Performance - Plonkish (cont.)

RCp with 8 rounds for t = 8:

32t = 256 lookup constraints
8t = 64 linear constraints
24t = 192 polynomial constraints of degree 2

⇒ ≈ 64t = 512 constraints of degree ≤ 2

POSEIDON/Poseidon2 for p = 264 − 232 + 1 and t = 8

General: t · RF + Rp − t + 1 constraints of degree d
7t + 23 = 79 constraints of degree 7
Or: 28t + 92 = 316 constraints of degree 2

⇒ RCp has less degree-2 constraints, more in total
22 / 23

Conclusion

New hash function RCp

Efficient in plain and in proof systems
Plain performance faster than SHA-3!
Side-channel resistant and allows constant time implementations

Design based on two different non-linear layers

Bricks: Arithmetic non-linear layer based on Feistel
Bars: Binary non-linear layer based on decomposition and χ

Currently fastest arithmetization friendly hash function

Generalized description for other primes in paper (to appear soonTM)
23 / 23

Questions
?

S C I E N C E
P A S S I O N

T E C H N O L O G Y

RCp:
Fast Arithmetization-Friendly Hashing
Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger,
Christian Rechberger, Markus Schofnegger, RomanWalch

23.04.2023

www.iaik.tugraz.at

PONOS

Bibliography I

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and
Alan Szepieniec. Design of Symmetric-Key Primitives for Advanced Cryptographic
Protocols. IACR Trans. Symmetric Cryptol. 2020.3 (2020), pp. 1–45.

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher,
Christian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel
Structures for MPC, and More. ESORICS (2). Vol. 11736. Lecture Notes in Computer
Science. Springer, 2019, pp. 151–171.

[BBC+22] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, and Vesselin Velichkov.
Anemoi: Exploiting the Link between Arithmetization-Orientation and
CCZ-Equivalence. IACR Cryptol. ePrint Arch. (2022), p. 840.

[GHR+22] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger,
Roman Walch, and Qingju Wang. Horst Meets Fluid-SPN: Griffin for
Zero-Knowledge Applications. IACR Cryptol. ePrint Arch. (2022), p. 403.

Bibliography II

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger,
Markus Schofnegger, and Roman Walch. Reinforced Concrete: A Fast Hash
Function for Verifiable Computation. CCS. ACM, 2022, pp. 1323–1335.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A New Hash Function for Zero-Knowledge Proof
Systems. USENIX Security Symposium. USENIX Association, 2021, pp. 519–535.

[GKS23] Lorenzo Grassi, Dmitry Khovratovich, and Markus Schofnegger. Poseidon2: A Faster
Version of the Poseidon Hash Function. IACR Cryptol. ePrint Arch. (2023), p. 323.

[GOPS22] Lorenzo Grassi, Silvia Onofri, Marco Pedicini, and Luca Sozzi. Invertible Quadratic
Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over Fnp Application to
Poseidon. IACR Trans. Symmetric Cryptol. 2022.3 (2022), pp. 20–72.

[Sal23] Robin Salen. Two additional instantiations from the Tip5 hash function
construction. https://toposware.com/paper_tip5.pdf (2023).

https://toposware.com/paper_tip5.pdf

Bibliography III

[SLST23] Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, and
Bobbin Threadbare. The Tip5 Hash Function for Recursive STARKs. IACR Cryptol.
ePrint Arch. (2023), p. 107.

[TBP20] Florian Tramèr, Dan Boneh, and Kenny Paterson. Remote Side-Channel Attacks on
Anonymous Transactions. USENIX Security Symposium. USENIX Association, 2020,
pp. 2739–2756.

	RCp
	
	Security Analysis
	
	Performance
	
	Questions
	

