Fast Arithmetization-Friendly Hashing

Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, Markus Schofnegger, Roman Walch
23.04.2023

T^C
Radboud University

) U S K
> www.iaik.tugraz.at

Domain Specific Symmetric Primitives

- Modern cryptographic protocols
- ZKP: Hash functions in Computational Integrity Proof Systems
- MPC: Multiple parties jointly compute a function on private input
- HE: Compute on encrypted data
- Symmetric Primitives are useful in these protocols
- ... but have different design criteria:
- Prime fields
- Minimizing multiplicative complexity/depth

Many new primitives designed

Domain Specific Symmetric Primitives

- Modern cryptographic protocols
- ZKP: Hash functions in Computational Integrity Proof Systems
- MPC: Multiple parties jointly compute a function on private input
- HE: Compute on encrypted data
- Symmetric Primitives are useful in these protocols
- ... but have different design criteria:
- Prime fields
- Minimizing multiplicative complexity/depth
\Rightarrow Many new primitives designed

Computational Integrity Proof Systems

- Prove that something has been computed correctly
- Program, hash function, Merkle-tree
- Potentially with zero-knowledge
- Many use cases involve hash functions
- Arithmetization
- Convert program to proof system representation
- Traditional hash functions often have inefficient representation
\Rightarrow New hash functions:
- Poseidon, Rescue, Griffin, Reinforced Concrete, ...

Design Criteria

- Depends on proof system
- Low number of multiplication (e.g., R1CS, Plonk)
- Low-degree representation and low-depth (e.g, AIR)
- Low number of additions (e.g., original Plonk)
- Recently:
- Support for lookup tables
- Use cases:
- Plain performance often bottleneck!

Symmetric Function Concepts in the Past

Type 1

"low degree only"

- Low-degree

$$
y=x^{d}
$$

- Low-degree equivalence
- Lookup tables
$y=x^{1 / d} \Rightarrow x=y^{d}$
- Slow in Plain
- Fewer rounds
- Fewer constraints
= Descue, Grifrin, Anemol
$y=T[x]$
- Fast in Plain
- Many rounds
- Often more constraints
- Poseidon, Poseidon2, Neptune, GMiMC

Type 3
"lookups"

Symmetric Function Concepts in the Past

Type 1

"low degree only"

- Low-degree

$$
y=x^{d}
$$

- Fast in Plain
- Many rounds
- Often more constraints
- Poseidon, Poseidon2, Neptune, GMiMC

Type 2
"non-procedural", "fluid"

Type 3 "lookups"

- Low-degree equivalence - Lookup tables

$$
y=x^{1 / d} \Rightarrow x=y^{d}
$$

- Slow in Plain
- Fewer rounds
- Fewer constraints
- Rescue, Griffin, Anemoi
- Very fast in Plain
- Fven fewer rounds \square
- Reinforced Concrete, Tip5

Symmetric Function Concepts in the Past

Type 1

"low degree only"

Type 2
"non-procedural", "fluid"

Type 3
"lookups"

- Low-degree

$$
y=x^{d}
$$

- Low-degree equivalence

$$
y=x^{1 / d} \Rightarrow x=y^{d}
$$

$$
y=T[x]
$$

- Fast in Plain
- Many rounds
- Often more constraints
- Poseidon, Poseidon2, Neptune, GMiMC
- Slow in Plain
- Fewer rounds
- Fewer constraints
- Rescue, Griffin, Anemoi
- Very fast in Plain
- Even fewer rounds
- Constraints depend on proof system
- Reinforced Concrete, Tip5

Goal

- New Hash function:
- Efficient plain performance
- Implementable without lookup tables to resist side-channel attacks
- Efficient proof system representation
- Focus on FRI-based proof systems
- Prime-field with fast modular reductions!
- Particular: $p=2^{64}-2^{32}+1$
- Allows lookup arguments for less constraints
$\Rightarrow R C_{p}$ (with $p=2^{64}-2^{32}+1$)

RC \#

Reinforced Concrete

- First arithmetization friendly hash function optimized for lookup tables
- 3 types of layer:
- Concrete: Linear mixing
- Bricks: Arithmetic non-linear layer
- Bars: Decomposition and lookup table
- Lookup represents repeated $(x+a)^{d}$

Reinforced Concrete (cont.)

- Faster than any previously published arithmetization oriented hash function
- When using lookup tables
- But still significantly slower than, e.g., SHA-3
- Problems:
- Fixed statesize $t=3$
\Rightarrow large prime fields $\left(\log _{2}(p)=256\right)$
- Decomposition is slow and difficult to generalize
- Arithmetic function in lookup table
- Slow without lookup table
- Only efficient in proof systems with lookup tables

The RC_{p} Permutation

Let statesize $t \geq 8, t=4 \cdot t^{\prime}$, one round is given as:

Bricks

- Arithmetic non-linear layer constructed from a quadratic Feistel

$$
\operatorname{Bricks}\left(x_{0}, x_{1}, \ldots, x_{t-1}\right):=\left(x_{0}, x_{1}+x_{0}^{2}, x_{2}+x_{1}^{2}, \ldots, x_{t-1}+x_{t-2}^{2}\right) .
$$

- Cheap in plain
- Cheap in proof systems
- Small number of multiplication, low-degree polynomials
- Good statistical properties (x^{2} has DP $_{\max }=1 / p$)

Concrete

- Affine layer $M \cdot x+c^{(i)}$
- Matrix used in Griffin [GHR+22]

$$
\begin{aligned}
M & =\operatorname{circ}\left(2 \cdot M_{4}, M_{4}, \ldots, M_{4}\right) \in \mathbb{F}_{p}^{t \times t}, \\
& =\left[\begin{array}{cccc}
2 \cdot M_{4} & M_{4} & \ldots & M_{4} \\
M_{4} & 2 \cdot M_{4} & \ldots & M_{4} \\
\vdots & & \ddots & \vdots \\
M_{4} & M_{4} & \ldots & 2 \cdot M_{4}
\end{array}\right]
\end{aligned}
$$

\ldots where M_{4} is a 4×4 MDS matrix

Concrete (cont.)

- Matrix very cheap in plain
- M_{4} computable by few additions only
- Also true for full matrix M
- Good statistical properties:

$$
M_{4}=\left(\begin{array}{llll}
5 & 7 & 1 & 3 \\
4 & 6 & 1 & 1 \\
1 & 3 & 5 & 7 \\
1 & 1 & 4 & 6
\end{array}\right)
$$

- Branch number is $t / 4+4$
\Rightarrow Together with Bricks provides statistical security

Bars

- Binary non-linear layer
- Decompose \rightarrow S-box \rightarrow Compose
- Decomposition / Composition
> $x \Leftrightarrow 2^{48} x_{3}+2^{32} x_{2}+2^{16} x_{1}+x_{0}$...i.e., split into 16-bit words
> - χ-like S-box: $y=S(x)$: $S(x)=x \oplus((\bar{x} \lll 1) \odot(x \lll 2) \odot(x \lll 3))$, Provides algebraic security

Bars

- Binary non-linear layer
- Decompose \rightarrow S-box \rightarrow Compose
- Decomposition / Composition

$$
x \Leftrightarrow 2^{48} x_{3}+2^{32} x_{2}+2^{16} x_{1}+x_{0}
$$

...i.e., split into 16-bit words

- χ-like S-box: $y=S(x)$:

$$
S(x)=x \oplus((\bar{x} \lll 1) \odot(x \lll 2) \odot(x \lll 3)),
$$

\Rightarrow Provides algebraic security

Bars

- Binary non-linear layer
- Decompose \rightarrow S-box \rightarrow Compose
- Decomposition / Composition

$$
x \Leftrightarrow 2^{48} x_{3}+2^{32} x_{2}+2^{16} x_{1}+x_{0}
$$

...i.e., split into 16 -bit words

- χ-like S-box: $y=S(x)$:

$$
S(x)=x \oplus((\bar{x} \lll 1) \odot(x \lll 2) \odot(x \lll 3)),
$$

\Rightarrow Provides algebraic security

Bars (cont.)

- Binary S-box in \mathbb{F}_{p} hash function
- Cheap in proof system due to lookup table
- Cheap in plain due to fast vectorized implementation
- Provides good algebraic properties
- Well-defined over \mathbb{F}_{p} ?

```
p=2 24}-\mp@subsup{2}{}{32}+1:\quadp-1=0xFFFF FFFF 0000000
If S(0xFFFF) = 0xFFFF and S(0x0000) = 0x0000:
- Bars(p-1)=p-1
| Bars}(x)<p-1\quad\forallx\in\mp@subsup{\mathbb{F}}{p}{}<p-
| ...since nothing except 0xFFFF can map to 0xFFFF
```


Bars (cont.)

- Binary S-box in \mathbb{F}_{p} hash function
- Cheap in proof system due to lookup table
- Cheap in plain due to fast vectorized implementation
- Provides good algebraic properties
- Well-defined over \mathbb{F}_{p} ?
- $p=2^{64}-2^{32}+1: \quad p-1=0 x F F F F$ FFFF 00000000
- If $S(0 x F F F F)=0 x F F F F$ and $S(0 x 0000)=0 \times 0000$:
- $\operatorname{Bars}(p-1)=p-1$
- $\operatorname{Bars}(x)<p-1 \quad \forall x \in \mathbb{F}_{p}<p-1$
- ...since nothing except 0xFFFF can map to 0xFFFF

Security Analysis D

(Work in progress)

Algebraic Properties of Bars

- Ideally: Bars represented by dense and high-degree polynomials
- Experiments on smaller, similar primes with $p=2^{n}-2^{m}+1$:
- Bars provides maximum degree $\left(\approx 2^{n}\right)$
- Density of polynomials > 99\%
$\Rightarrow 2$ Bars for dense polynomials with degree 2^{128} with $p \approx 2^{64}$
$\Rightarrow 4$ Bars required for Meet-in-the-middle attacks
- Lower bounds proven in paper
- Bars has degree $\geq 2^{57}$ over \mathbb{F}_{p}
- Bars $^{-1}$ has degree $>2^{47}$ over \mathbb{F}_{n}
$\Rightarrow 6$ Bars more than enough

Algebraic Properties of Bars

- Ideally: Bars represented by dense and high-degree polynomials
- Experiments on smaller, similar primes with $p=2^{n}-2^{m}+1$:
- Bars provides maximum degree $\left(\approx 2^{n}\right)$
- Density of polynomials $>99 \%$
$\Rightarrow 2$ Bars for dense polynomials with degree 2^{128} with $p \approx 2^{64}$
$\Rightarrow 4$ Bars required for Meet-in-the-middle attacks
- Lower bounds proven in paper
- Bars has degree $\geq 2^{57}$ over \mathbb{F}_{p}
- Bars ${ }^{-1}$ has degree $\geq 2^{47}$ over \mathbb{F}_{p}
$\Rightarrow 6$ Bars more than enough

Statistical Attacks

- We just consider Concrete and Bricks
- Differential attacks:
- Each active $x \mapsto x^{2}$ map has $\mathrm{DP}_{\text {max }}=1 / p$
- Main issue: $x_{0} \mapsto x_{0}$ in Bricks
- We show that two consecutive rounds have $D P \leq p^{-t / 8-1 / 2}$
$\Rightarrow 6$ rounds have DP $\leq 2^{-256}($ for $t \geq 8)$
- Other attacks:
- Rebound attack, truncated differential attacks, ..
- Work in progress...

Statistical Attacks

- We just consider Concrete and Bricks
- Differential attacks:
- Each active $x \mapsto x^{2}$ map has DP $_{\text {max }}=1 / p$
- Main issue: $x_{0} \mapsto x_{0}$ in Bricks
- We show that two consecutive rounds have DP $\leq p^{-t / 8-1 / 2}$
$\Rightarrow 6$ rounds have DP $\leq 2^{-256}($ for $t \geq 8)$
- Other attacks:
- Rebound attack, truncated differential attacks, ...
- Work in progress...

Security Analysis (cont.)

- Open points:
- Full statistical analysis
- Analysis/experiments for Gröbner basis attacks
- Preliminary Number of Rounds:

Security (bits)	r
80	7
$\mathbf{1 2 8}$	$\mathbf{8}$
196	10
256	12

Performance 늑

Modes of operation

- 2:1 compression:
- $t=8$ is sufficient!
- E.g., for Merkle-tree with fixed depth
- General purpose hashing:
- Use a sponge $t>=12$
- 4 words for capacity

Performance Summary

- Used prime field allows cheap/fast modular reduction
- Only $2 t$ - 1 modular reductions per round
- Before Bars
- After squares in Bricks
- Bars efficiently vectorizable without lookup tables
- Cheap side channel resistant implementation possible
- Use lookup tables in proof system
- Concrete chosen to minimize number of additions
- No multiplications required!

Plain Performance (for 8 Rounds)

Table: Plain performance comparison implemented in Rust.

Hashing algorithm	Time (ns)		
	$t=8$	$t=12$	
RC p	147.6	237.5	
Tip5 $(t=16)$			487.0
Tip4	-	252.0	
PosEIDoN	2011.2	3510.5	
Poseidon2	973.0	1361.8	
Reinforced Concrete (BN254, $t=3)$			1467.1
SHA3-256			189.8
SHA-256			45.3
Concrete	17.8	29.2	
Bricks	14.4	22.5	
Bars	12.2	16.9	

Constant Time Performance (for 8 Rounds)

- Resisting side-channel attacks is important, even in ZK use cases
- E.g., recently shown at Usenix by [TBP20]
- Benchmarks when replacing fast modular reduction with constant time one:

Hashing algorithm	Time (ns)	
	$t=8$	$t=12$
RC_{p}	358.1	535.9
PoSEIDON	4135.0	6960.4
Poseidon2	2011.0	2695.5
Concrete	34.6	50.1
Bricks	17.7	29.6
Bars	12.2	20.0

- Unrolling S-box for Reinforced Concrete, Tip5, Tip4' likely very expensive

Proof System Performance - Plonkish

- Bricks:
- $t-1$ polynomial constraints of degree 2
- Bars:
- Decompostion: t linear constraints
- $4 t$ lookup constraints for $S(x)$
- $2 t$ polynomial constraints (degree 2) to ensure decompositions are $\in \mathbb{F}_{p}$
- Total for R rounds:
- $4 t R$ lookup constraints
- $t R$ linear constraints
- $3 t R$ polynomial constraints of degree 2

Proof System Performance - Plonkish (cont.)

- $\quad R C_{p}$ with 8 rounds for $t=8$:
- $32 t=256$ lookup constraints
- $8 t=64$ linear constraints
- $24 t=192$ polynomial constraints of degree 2
$\Rightarrow \approx 64 t=512$ constraints of degree ≤ 2
- Poseidon/Poseidon2 for $p=2^{64}-2^{32}+1$ and $t=8$
- General: $t \cdot R_{F}+R_{p}-t+1$ constraints of degree d
- $7 t+23=79$ constraints of degree 7
- Or: $28 t+92=316$ constraints of degree 2
$\Rightarrow R C_{p}$ has less degree- 2 constraints, more in total

Conclusion

- New hash function RC_{p}
- Efficient in plain and in proof systems
- Plain performance faster than SHA-3!
- Side-channel resistant and allows constant time implementations
- Design based on two different non-linear layers
- Bricks: Arithmetic non-linear layer based on Feistel
- Bars: Binary non-linear layer based on decomposition and χ
- Currently fastest arithmetization friendly hash function
- Generalized description for other primes in paper (to appear soon ${ }^{\top M}$)

Questions

Fast Arithmetization-Friendly Hashing

Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, Markus Schofnegger, Roman Walch
23.04.2023

T^C
Radboud University

) U S K
> www.iaik.tugraz.at

Bibliography I

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. IACR Trans. Symmetric Cryptol. 2020.3 (2020), pp. 1-45.
[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel Structures for MPC, and More. ESORICS (2). Vol. 11736. Lecture Notes in Computer Science. Springer, 2019, pp. 151-171.
[BBC+22] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, and Vesselin Velichkov. Anemoi: Exploiting the Link between Arithmetization-Orientation and CCZ-Equivalence. IACR Cryptol. ePrint Arch. (2022), p. 840.
[GHR+22] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger, Roman Walch, and Qingju Wang. Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications. IACR Cryptol. ePrint Arch. (2022), p. 403.

Bibliography II

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, Markus Schofnegger, and Roman Walch. Reinforced Concrete: A Fast Hash Function for Verifiable Computation. CCS. ACM, 2022, pp. 1323-1335.
[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. Poseidon: A New Hash Function for Zero-Knowledge Proof Systems. USENIX Security Symposium. USENIX Association, 2021, pp. 519-535.
[GKS23] Lorenzo Grassi, Dmitry Khovratovich, and Markus Schofnegger. Poseidon2: A Faster Version of the Poseidon Hash Function. IACR Cryptol. ePrint Arch. (2023), p. 323.
[GOPS22] Lorenzo Grassi, Silvia Onofri, Marco Pedicini, and Luca Sozzi. Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over Fnp Application to Poseidon. IACR Trans. Symmetric Cryptol. 2022.3 (2022), pp. 20-72.
[Sal23] Robin Salen. Two additional instantiations from the Tip5 hash function construction. https://toposware.com/paper_tip5.pdf (2023).

Bibliography III

[SLST23] Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, and Bobbin Threadbare. The Tip5 Hash Function for Recursive STARKs. IACR Cryptol. ePrint Arch. (2023), p. 107.
[TBP20] Florian Tramèr, Dan Boneh, and Kenny Paterson. Remote Side-Channel Attacks on Anonymous Transactions. USENIX Security Symposium. USENIX Association, 2020, pp. 2739-2756.

