Scaling Priva
Checks to Millio

- : ey
Remco Bloemen, Daniel Kales, Philipp Sippl, Roman Walch
July 23rd, 2024 -
-
-
- -
-
TACEO.IO *

www.taceo.io

TACEO and Me

= Roman Walch

PhD from IAIK, TU Graz, Austria

= MPC, FHE, ZK, and symmetric ciphers/hash functions
= finished January 2024

Co-founder and lead cryptographer at TACEO

= TACEO

Spinoff of TU Graz

Currently 11 people
Goal is to build the encrypted compute layer

= Allow to compute on a private shared state using MPC and ZK

TAC=D

1/25

TAC=D

Introduction

Secure Multiparty Computation (MPC) TAC:=D

= MPC allows mutually untrusting parties to compute
functions on combined input

® Inputs stay private

= Flexible technology /O*
{¢

= Many protocols and different security levels

= Semi-honest vs. malicious security

= Honest vs. dishonest majority
= Potential to bring privacy to many use cases!

= Privacy-preserving data analysis
= Threshold signatures and wallets

= This project: Decentralization 2

World ID Infrastructure

= World ID

= Digital identity linked to individuals
= Unique identifier for each individual
= Only humans, no Al

= Authentication via zero-knowledge proofs
= Setup phase for new identifiers

= Uniqueness enforced via iris scans
s Compare new iris scan to database

= Iris scans only used during signup

TAC=D

Figure: (© Worldcoin

3/25

Database Check TAC=D

= Database previously hosted by Worldcoin Foundation Q
m Centralized database has privacy concerns and

potentially allows misuse

Result
= Database full with biometric data
= Partial information about iris can be reconstructed |
Database
from code
= Deny giving out an ID for specific individuals
. .. Ins

= Decentralize iris code database

= Split database amongst multiple organizations

securely using MPC

4/25

Decentralized Iris Database using MPC

= No database holder learns
database content or new iris code

MPC-shared database

m Parties have random
secret-shares

Orb secret-shares new iris code

Compute similarity check
protocol in MPC

But: Overhead of MPC protocols

O

tation

TAC=D

Results

Database
(secret-shared)

Irs (secret-shared)

5/25

TAC=D

The Protocol

Iris Similarity Check Protocol TAC=D

= Iris code € with mask ni
= Mask hides faulty bits
= Match new iris code against whole database
= Comparison of two iris codes via fractional hamming distance
m = my A i
ml = CountOnes(ri)
hd = CountOnes((¢1 @ &) A m)
hd/ml <teR
= Simple protocol, but difficult to do efficiently in MPC

6/25

MPC-Problems TACZO

= Mixed operations

= Hamming-distance: XOR (boolean), Sum (16-bit integer)

= Comparison and aggregation (boolean)
= Data sizes:

= 1 iris code = 12800 bits

= Current database size: ~6 million iris codes
s Communication overhead

= Parties exchange randomized data for each multiplication/AND gate

= Problem for huge database!
= Janus [ELS+24]: ~2k iris code comparisons per minute

7/25

TAC=D

Introducing MPC

Additive Secret Sharing TAC=D

Share x for n parties: [x] = (x1, X2, ..., Xn)

= Sample n — 1 random elements xq, ..., X,—1

= Last share: x, = x — S0l x;

= Reconstruct: x =37 ; x; Xf Xf
Properties: ’ ‘
m n— 1 shares have no information on x L l

= All shares required for reconstruction

m Scheme is linear!

reconstruct

= Share addition, constant addition, constant multiplication
can be computed without interaction

= Share multiplication requires party-interaction
8/25

3-Party Replicated Sharing TAC:=D

= Additive sharing, where each party has two shares

= Share [x] = (x1,x2,%3)
= Party i has (x;, xi—1)

9/25

3-Party Replicated Sharing TAC:=D

= Additive sharing, where each party has two shares

= Share [x] = (x1, %2, x3)
= Party i has (x;, xi—1)

= Linear operations can be computed without interaction

= Only 2 out of 3 parties required to reconstruct secret (honest majority)

9/25

3-Party Replicated Sharing TAC:=D

= Additive sharing, where each party has two shares

= Share [x] = (x1, %2, x3)
= Party i has (x;, xi—1)

= Linear operations can be computed without interaction
= Only 2 out of 3 parties required to reconstruct secret (honest majority)
= Multiplication [z] = [x] - [y]:

m local part: zz=x;-yi+Xxj—1-¥i+X;-¥i—.1+ 1t ... with random zero share r;
= Transform additive share z; to replicated share by sending z; to party i +1

9/25

3-Party Replicated Sharing TAC:=D

= Additive sharing, where each party has two shares
= Share [x] = (x1, %2, x3)
= Party i has (x;, xi—1)
= Linear operations can be computed without interaction
= Only 2 out of 3 parties required to reconstruct secret (honest majority)
= Multiplication [z] = [x] - [y]:

m local part: zz=x;-yi+Xxj—1-¥i+X;-¥i—.1+ 1t ... with random zero share r;
= Transform additive share z; to replicated share by sending z; to party i +1

= Dot product [z] = > .[xi] - [vi]
= Compute local parts of all multiplications

= Reshare the sum

9/25

Shamir Sharing TACZD

Different approach to secret sharing over field Fp:

= Threshold sharing (k-out-of-n)

Random polynomial with x in constant term Xf Xf)13
p(X)=x+a - X+ .. +a- Xt | y :Lf(X) ; |
...with random a; yi y2 %]

Share [x] = (p(1), p(2), - - ., p(n))

Reconstruct from k = t + 1 shares using Lagrange interpolation

reconstruct

10/25

Shamir sharing (cont.) TAC2O
= Linear operations can be computed locally on shares
= Multiplications:

m z;=x;-yjisvalidshareof z=x-y

m But: Polynomial degree doubles
= Our case:

= n =3 parties, t = 1 (honest majority)
= Multiply share with Lagrange coefficient:

= Shamir with t = 1 = 2-party additive
= Shamir with t = 2 (e.g., after multiplication) = 3-party additive

= Dot-product to replicated sharing: Only communicate result

11/25

TAC=D

First Experiments

Efficient Hamming Distance

Biggest Factor in communication

Idea: Rewrite to dot product:

hd([a], [B]) = CountOnes([a] & [5])
= lail +>_[b] - 2- (4], [5])
Linear operations require no communication (sums, multiply by 2, etc.)

1 dot product:

= Communication equal to one multiplication in replicated sharing or Shamir

TAC=D

12/25

Efficient Hamming Distance TAC=D

= Biggest Factor in communication

» |dea: Rewrite to dot product:

hd([3], [b]) = CountOnes([3] & [b])
=2 _lal+ > _[b] -2+ ([a. [B])

= Linear operations require no communication (sums, multiply by 2, etc.)
= 1 dot product:

= Communication equal to one multiplication in replicated sharing or Shamir

= Optimized MPC protocol:

= Orb shares bits over larger ring Z;, s.t. computation does not overflow
= Use replicated sharing or Shamir sharing
= Public masks i

= Communication independent to vector sizes 1225

Threshold comparison TAC=D

» What about share comparison [a] < [b]?
m If subtraction does not overflow, then rewrite to MSB extraction:
[a] < [b] & MSB([a — b])
= Arithmetic to binary conversion:
X1+X+Xx3=Xx = x{@xé@xé =X
= |n 3-party replicated sharing over rings Zox:

= Split shares [x1] = (x1,0,0), [x2] = (0, x2,0), [x3] = (0,0, x3)
= Add [x1], [x2], [x3] in MPC using binary addition circuit

= More complicated in prime field FF,

13/25

Security Models

Two security models:

= Semi-honest version of ABY3 [MR18]
= Extension for malicious security

Options for malicious security:

= Triple-sacrificing (e.g., with cut-and-choose [ABF+17])
= Distributed zero-knowledge proofs (e.g., SWIFT [KPPS21])
= SPDZWise MACs (e.g., Fantastic Four [DEK21])

Our Experiments:

m Arithmetic: SPDZWise MACs

= Preserves communication being independent of vector sizes in dot products
= Binary: Cut-and-choose based triple sacrificing
= Smallest overhead for AND gates

TAC=D

14/25

Experiments TAC=D

Protocol Runtime (ms) Data (MB)

Plain 134 -
Semi-honest 426 0.598
Malicious 2900 4.643

Table: Singlethreaded benchmark for DB with 100000 iris codes.

= Low communication!
= Throughput:
= Semi-honest: ~230k iris code comparisons per second

= Malicious: ~34k iris code comparisons per second

15/25

First Results TACZD

= Experiments (including report):
https://github.com/TaceoLabs/worldcoin-experiments

= Conclusion:

= Focus on high-performance

= Focus on semi-honest version

= Lots of ideas for improvement

16/25

https://github.com/TaceoLabs/worldcoin-experiments

TAC=D

Improvements

Masked Bitvectors TAC=D

» |dea: Encode mask in iris code:

c m|c
1 1 1
0o 1]-1
?7 010

= We show in paper:
CountOnes((¢; ® &) A m') < t-ml

becomes
(€1, &) >(1—-2-t)-ml

= Saves two sums and masking ¢; and & in MPC

17/25

Rep3 vs. Shamir

= Private iris codes, public masks

([&1],[E5]) > (1 — 2 - t) - CountOnes(riy, iy)

= 1 dot product and MSB extraction

m Replicated sharing:

Store 2 shares
3 multiplications to calculate 1 MPC multiplications
Ring Zo«: Cheaper MSB-extract

= Shamir sharing:

Store 1 share

1 multiplication to calculate 1 MPC multiplications
Transform to replicated sharing after dot-product
Field IF,: More expensive MSB-extract

TAC=D

18/25

Hiding Iris Codes and Masks TAC:=D

= Private iris codes, private masks
([al[a]) > (1 =2 t) - ([m], [r2])
= Share multiplied with v € R is expensive in MPC
= Approximate (1 —2-t) with 7:
b-([al.[&]) > a- ([m], [A])
. a - [x] should not overflow
= Tradeoff:

= Larger ring = Dot product in larger ring
= Keep ring size = Lift shares to larger ring in MPC

19/25

Benchmarks TACZD

= So far this is the status of the paper:
https://eprint.iacr.org/2024/705.pdf

» Singlethreaded performance (AWS Graviton3), localhost network
= Dot products:

= ~2M per second
= Threshold comparison (including lifting):

= ~10M per second

= 2 Dot products + threshold comparison:

= Throughput: ~900k iris code comparisons per second

20/25

https://eprint.iacr.org/2024/705.pdf

TAC=D

Galois Rings and GPU

Shamir over Galois Ring TAC=D

= Shamir vs. Rep3: Can we get best of both worlds?

= Shamir sharing helps with RAM size dot-product compute
= Replicated sharing over Zo« is more efficient for bit operations
= Conversion is complex and expensive

Why not Shamir over Z,:?

u Need sequence of exceptional points for Lagrange interpolation

= Pairwise differences of exceptional points need to be invertible
= Largest sequence of exceptional points for Zox:
= Cannot even do 2-party Shamir sharing...

21/25

Shamir over Galois Ring (cont.) TAC:ZD

= Shamir over Galois Ring Zy[X]/(X? — X — 1)!

= Degree-1 polynomial with coefficients in Z«, operations modulo (X2 — X — 1).
= Length of exceptional sequence: 29 = 4

= Can do 3-party Shamir!
= Naive approach: Embed Zy« in constant term of Zo«[X]/(X? — X —1).

= Overhead of 2x, same as replicated sharing

22/25

Shamir over Galois Ring (cont.) TAC:ZD

m Packing: Embed 2 elements of Zo« as ap + a1 X into a single GR element.

= Smart choice of quotient polynomial:

(ao+alX)-(b0+b1X) mod X2—X—-1= (aobo + 81b1)+(30b1+81bo—|—31b1)x

= Constant term of Galois-Ring multiplication is dot-product of 2 Z,« elements.

= Lagrange coefficients for reconstruction can be multiplied onto a beforehand.

= Don't even need to compute X term.

[co + c1X]aaa = [colaaa + [c1]aaaX = (X - [a0 + a1 X]shamir) - [Po + b1X]shamir

= Store 1 share, 1 multiplication per dot-element, cheap ring-MSB-extract

23/25

GPU Implementation TAC=D
= Dot-product well suited for GPU's

= Nvidia NCCL:

= GPUs directly communicate over network

= No GPU < CPU data transfer h —_— h
= Rust cudarc library wpy

= Execute whole protocol on multiple GPUs

= Result on 3 AWS P5 instances (8x H100
GPUs, 3.2 Tbps)

m Throughput: ~2.48 billion iris code
comparisons per second

24 /25

Conclusion TACZO

= Learnings:

= Consider GPUs for massively improved throughput
= Clever protocol optimizations + fast hardware:

= MPC can be fast enough for real world use cases with millions of users

= Project status:
= Predecessor (only shared dot-product) deployed
m Cleartext database is deleted
= Prototype of full version on GPU done
= Working on error management, adding new iris to database, tracing info, ...

= Deployed in the next months

25 /25

TAC=D

Questions

Scaling Priva
Checks to Millio

- : ey
Remco Bloemen, Daniel Kales, Philipp Sippl, Roman Walch
July 23rd, 2024 -
-
-
- -
-
TACEO.IO *

www.taceo.io

Bibliography | TACZD

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof,
Kazuma Ohara, Adi Watzman, and Or Weinstein. ‘Optimized Honest-Majority MPC for
Malicious Adversaries - Breaking the 1 Billion-Gate Per Second Barrier”. In: IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2017, pp. 843-862.

[ADEN21] Mark Abspoel, Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof. “An Efficient
Passive-to-Active Compiler for Honest-Majority MPC over Rings’'. In: ACNS (2).
Vol. 12727. LNCS. Springer, 2021, pp. 122-152.

[BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. "‘Practical Fully Secure Three-Party
Computation via Sublinear Distributed Zero-Knowledge Proofs'. In: CCS. ACM, 2019,

pp. 869-886.
[BKSW24] Remco Bloemen, Daniel Kales, Philipp Sippl, and Roman Walch. “Large-Scale MPC:

Scaling Private Iris Code Uniqueness Checks to Millions of Users''. In: IACR Cryptol.
ePrint Arch. (2024), p. 705.

Bibliography || TACZD

[DEK21] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. “'Fantastic Four:
Honest-Majority Four-Party Secure Computation With Malicious Security’’. In: USENIX
Security Symposium. USENIX Association, 2021, pp. 2183-2200.

[ELS+24] Kasra Edalatnejad, Wouter Lueks, Justinas Sukaitis, Vincent Graf Narbel,
Massimo Marelli, and Carmela Troncoso. ''Janus: Safe Biometric Deduplication for
Humanitarian Aid Distribution”. In: SP. IEEE, 2024, pp. 115-115.

[KPPS21] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. “SWIFT: Super-fast and
Robust Privacy-Preserving Machine Learning’'. In: USENIX Security Symposium.
USENIX Association, 2021, pp. 2651-2668.

[MR18] Payman Mohassel and Peter Rindal. “ABY3: A Mixed Protocol Framework for Machine
Learning”". In: CCS. ACM, 2018, pp. 35-52.

[Sha79] Adi Shamir. “How to Share a Secret’’. In: Commun. ACM 22.11 (1979), pp. 612-613.

TAC=D

Appendix

Malicious Security TACZD
m SPDZWise MACs for Arithmetic
= Extend shares [x] with MAC [+] = [a - x| using MAC-key [¢]

= Extend operations to also compute on MACs
» MAC-check: Ensures correctness for all multiplications

= Security: Operate on 64-bit shares instead of 16-bit

26/25

Malicious Security TAC=D

m SPDZWise MACs for Arithmetic
= Extend shares [x] with MAC [+] = [a - x| using MAC-key [¢]
= Extend operations to also compute on MACs
» MAC-check: Ensures correctness for all multiplications

= Security: Operate on 64-bit shares instead of 16-bit

= Triple sacrificing for Binary:

= Offline Phase:
= Precompute m AND triples ([x], [y], [z]). where [z] = [x] A [y]

= Reduce them to n valid AND triples with cut-and-choose and sacrificing

= Online phase: Check each AND gate by sacrificing pre-computed triples

26/25

MPC Lifting TACZD

m We opt for cheaper dot product in Zxs and 16-bit accuracy for a, b
u Llftlng [X]216 to [X]232I

= Problem: Reconstruction x; + x» + x3 = x mod 216

= X1+ X2+ X3 :X+C1'216+C2-217 mod 232

m Extract c1, ¢ using 18-bit binary addition circuit

= Interpret [x]o. as [x]o» and subtract c; - 21 and ¢, - 217

27 /25

MPC Lifting TACZD

m We opt for cheaper dot product in Zxs and 16-bit accuracy for a, b
u Llftlng [X]216 to [X]232I

= Problem: Reconstruction x; + x» + x3 = x mod 216

= X1+ X2+ X3 :X+C1'216+C2-217 mod 232

m Extract c1, ¢ using 18-bit binary addition circuit

= Interpret [x]o. as [x]o» and subtract c; - 21 and ¢, - 217
s Trick: b =216

L] 216 . [X]216 = [216 . X]232

= MPC lifting of ([c]],[c5]) is free

27 /25

Security and Comparison to Homomorphic Encryption

o Non—Cé”&éRos& B
O+

MPC solution:
= Non-collusion assumption for computing parties
Homomorphic encryption (HE):

= HE encrypted database
= Key-holder with non-collusion assumption
= Performance and ciphertext expansion
= Addition of encrypted 16-bit integer: 100 ms
= Encryption of 1 iris code: 37 MB

= Slower, high communication, and larger database
size expansion

TACE

[Result] 8

Lbox'toxbo\sejﬁ

LI“‘S]@

o/

28/25

	Introduction
	
	The Protocol
	
	Introducing MPC
	
	First Experiments
	
	Improvements
	
	Galois Rings and GPU
	
	Questions
	
	Appendix
	

