
Scaling Private Iris Code Uniqueness

Checks to Millions of Users

Remco Bloemen, Daniel Kales, Philipp Sippl, Roman Walch

July 23rd, 2024

TACEO.IO

www.taceo.io


TACEO and Me

Roman Walch

PhD from IAIK, TU Graz, Austria

MPC, FHE, ZK, and symmetric ciphers/hash functions

finished January 2024

Co-founder and lead cryptographer at TACEO

TACEO

Spinoff of TU Graz

Currently 11 people

Goal is to build the encrypted compute layer

Allow to compute on a private shared state using MPC and ZK

1 / 25



Introduction

�



Secure Multiparty Computation (MPC)

MPC allows mutually untrusting parties to compute
functions on combined input

Inputs stay private

Flexible technology

Many protocols and different security levels

Semi-honest vs. malicious security

Honest vs. dishonest majority

Potential to bring privacy to many use cases!

Privacy-preserving data analysis

Threshold signatures and wallets

This project: Decentralization



 
3

2 / 25



World ID Infrastructure

World ID

Digital identity linked to individuals

Unique identifier for each individual

Only humans, no AI

Authentication via zero-knowledge proofs

Setup phase for new identifiers

Uniqueness enforced via iris scans

Compare new iris scan to database

Iris scans only used during signup

Figure: © Worldcoin

3 / 25



Database Check

Database previously hosted by Worldcoin Foundation

Centralized database has privacy concerns and
potentially allows misuse

Database full with biometric data

Partial information about iris can be reconstructed
from code

Deny giving out an ID for specific individuals

⇒ Decentralize iris code database

Split database amongst multiple organizations
securely using MPC

4 / 25



Decentralized Iris Database using MPC

MPC-shared database

Parties have random
secret-shares

Orb secret-shares new iris code

Compute similarity check
protocol in MPC

⇒ No database holder learns
database content or new iris code

But: Overhead of MPC protocols

5 / 25



The Protocol

2



Iris Similarity Check Protocol

Iris code c⃗ with mask m⃗

Mask hides faulty bits

Match new iris code against whole database

Comparison of two iris codes via fractional hamming distance

m⃗ = m⃗1 ∧ m⃗2

ml = CountOnes(m⃗)

hd = CountOnes((c⃗1 ⊕ c⃗2) ∧ m⃗)

hd/ml < t ∈ R

⇒ Simple protocol, but difficult to do efficiently in MPC

6 / 25



MPC-Problems

Mixed operations

Hamming-distance: XOR (boolean), Sum (16-bit integer)

Comparison and aggregation (boolean)

Data sizes:

1 iris code ≡ 12 800 bits

Current database size: ∼6 million iris codes

Communication overhead

Parties exchange randomized data for each multiplication/AND gate

Problem for huge database!

⇒ Janus [ELS+24]: ∼2k iris code comparisons per minute

7 / 25



Introducing MPC

�



Additive Secret Sharing

Share x for n parties: [x ] = (x1, x2, . . . , xn)

Sample n − 1 random elements x1, ..., xn−1

Last share: xn = x −
∑n−1

i=1 xi

⇒ Reconstruct: x =
∑n

i=1 xi

Properties:

n − 1 shares have no information on x

All shares required for reconstruction

Scheme is linear!

Share addition, constant addition, constant multiplication
can be computed without interaction

Share multiplication requires party-interaction

x

share

reconstruct

y = f (x)

y

x1 x2 x3

y1 y2 y3

8 / 25



3-Party Replicated Sharing

Additive sharing, where each party has two shares

Share [x ] = (x1, x2, x3)

Party i has (xi , xi−1)

Linear operations can be computed without interaction

Only 2 out of 3 parties required to reconstruct secret (honest majority)

Multiplication [z ] = [x ] · [y ]:

Local part: zi = xi · yi + xi−1 · yi + xi · yi−1 + ri ... with random zero share ri
Transform additive share zi to replicated share by sending zi to party i + 1

Dot product [z ] =
∑

i [xi ] · [yi ]

Compute local parts of all multiplications

Reshare the sum
9 / 25



3-Party Replicated Sharing

Additive sharing, where each party has two shares

Share [x ] = (x1, x2, x3)

Party i has (xi , xi−1)

Linear operations can be computed without interaction

Only 2 out of 3 parties required to reconstruct secret (honest majority)

Multiplication [z ] = [x ] · [y ]:

Local part: zi = xi · yi + xi−1 · yi + xi · yi−1 + ri ... with random zero share ri
Transform additive share zi to replicated share by sending zi to party i + 1

Dot product [z ] =
∑

i [xi ] · [yi ]

Compute local parts of all multiplications

Reshare the sum
9 / 25



3-Party Replicated Sharing

Additive sharing, where each party has two shares

Share [x ] = (x1, x2, x3)

Party i has (xi , xi−1)

Linear operations can be computed without interaction

Only 2 out of 3 parties required to reconstruct secret (honest majority)

Multiplication [z ] = [x ] · [y ]:

Local part: zi = xi · yi + xi−1 · yi + xi · yi−1 + ri ... with random zero share ri
Transform additive share zi to replicated share by sending zi to party i + 1

Dot product [z ] =
∑

i [xi ] · [yi ]

Compute local parts of all multiplications

Reshare the sum
9 / 25



3-Party Replicated Sharing

Additive sharing, where each party has two shares

Share [x ] = (x1, x2, x3)

Party i has (xi , xi−1)

Linear operations can be computed without interaction

Only 2 out of 3 parties required to reconstruct secret (honest majority)

Multiplication [z ] = [x ] · [y ]:

Local part: zi = xi · yi + xi−1 · yi + xi · yi−1 + ri ... with random zero share ri
Transform additive share zi to replicated share by sending zi to party i + 1

Dot product [z ] =
∑

i [xi ] · [yi ]

Compute local parts of all multiplications

Reshare the sum
9 / 25



Shamir Sharing

Different approach to secret sharing over field Fp:

Threshold sharing (k-out-of-n)

Random polynomial with x in constant term

p(X ) = x + a1 · X + ...+ at · X t

. . . with random ai

Share [x ] = (p(1), p(2), . . . , p(n))

Reconstruct from k = t + 1 shares using Lagrange interpolation

x

share

reconstruct

y = f (x)

y

x1 x2 x3

y1 y2 y3

10 / 25



Shamir sharing (cont.)

Linear operations can be computed locally on shares

Multiplications:

zi = xi · yi is valid share of z = x · y
But: Polynomial degree doubles

Our case:

n = 3 parties, t = 1 (honest majority)

Multiply share with Lagrange coefficient:

Shamir with t = 1 ⇒ 2-party additive

Shamir with t = 2 (e.g., after multiplication) ⇒ 3-party additive

⇒ Dot-product to replicated sharing: Only communicate result

11 / 25



First Experiments

2



Efficient Hamming Distance

Biggest Factor in communication

Idea: Rewrite to dot product:

hd([a⃗], [b⃗]) = CountOnes([a⃗]⊕ [b⃗])

=
∑
i

[ai ] +
∑
i

[bi ]− 2 · ⟨[a⃗], [b⃗]⟩

Linear operations require no communication (sums, multiply by 2, etc.)
1 dot product:

Communication equal to one multiplication in replicated sharing or Shamir

Optimized MPC protocol:

Orb shares bits over larger ring Zt , s.t. computation does not overflow

Use replicated sharing or Shamir sharing

Public masks m⃗

⇒ Communication independent to vector sizes 12 / 25



Efficient Hamming Distance

Biggest Factor in communication

Idea: Rewrite to dot product:

hd([a⃗], [b⃗]) = CountOnes([a⃗]⊕ [b⃗])

=
∑
i

[ai ] +
∑
i

[bi ]− 2 · ⟨[a⃗], [b⃗]⟩

Linear operations require no communication (sums, multiply by 2, etc.)
1 dot product:

Communication equal to one multiplication in replicated sharing or Shamir

Optimized MPC protocol:

Orb shares bits over larger ring Zt , s.t. computation does not overflow

Use replicated sharing or Shamir sharing

Public masks m⃗

⇒ Communication independent to vector sizes 12 / 25



Threshold comparison

What about share comparison [a] < [b]?

If subtraction does not overflow, then rewrite to MSB extraction:

[a] < [b] ⇔ MSB([a− b])

⇒ Arithmetic to binary conversion:

x1 + x2 + x3 = x ⇒ x ′1 ⊕ x ′2 ⊕ x ′3 = x

In 3-party replicated sharing over rings Z2k :

Split shares [x1] = (x1, 0, 0), [x2] = (0, x2, 0), [x3] = (0, 0, x3)

Add [x1], [x2], [x3] in MPC using binary addition circuit

More complicated in prime field Fp

13 / 25



Security Models

Two security models:

Semi-honest version of ABY3 [MR18]

Extension for malicious security

Options for malicious security:

Triple-sacrificing (e.g., with cut-and-choose [ABF+17])

Distributed zero-knowledge proofs (e.g., SWIFT [KPPS21])

SPDZWise MACs (e.g., Fantastic Four [DEK21])

Our Experiments:

Arithmetic: SPDZWise MACs

⇒ Preserves communication being independent of vector sizes in dot products

Binary: Cut-and-choose based triple sacrificing

⇒ Smallest overhead for AND gates
14 / 25



Experiments

Protocol Runtime (ms) Data (MB)

Plain 134 -

Semi-honest 426 0.598
Malicious 2 900 4.643

Table: Singlethreaded benchmark for DB with 100 000 iris codes.

Low communication!

Throughput:

Semi-honest: ∼230k iris code comparisons per second

Malicious: ∼34k iris code comparisons per second

15 / 25



First Results

Experiments (including report):
https://github.com/TaceoLabs/worldcoin-experiments

Conclusion:

Focus on high-performance

⇒ Focus on semi-honest version

Lots of ideas for improvement

16 / 25

https://github.com/TaceoLabs/worldcoin-experiments


Improvements

3



Masked Bitvectors

Idea: Encode mask in iris code:

c m c ′

1 1 1
0 1 -1
? 0 0

We show in paper:

CountOnes((c⃗1 ⊕ c⃗2) ∧ m⃗′) < t · ml

becomes
⟨c⃗ ′1, c⃗ ′2⟩ > (1− 2 · t) · ml

⇒ Saves two sums and masking c⃗1 and c⃗2 in MPC

17 / 25



Rep3 vs. Shamir

Private iris codes, public masks

⟨[c⃗ ′1], [c⃗ ′2]⟩ > (1− 2 · t) · CountOnes(m⃗1, m⃗2)

⇒ 1 dot product and MSB extraction

Replicated sharing:

Store 2 shares

3 multiplications to calculate 1 MPC multiplications

Ring Z2k : Cheaper MSB-extract

Shamir sharing:

Store 1 share

1 multiplication to calculate 1 MPC multiplications

Transform to replicated sharing after dot-product

Field Fp: More expensive MSB-extract
18 / 25



Hiding Iris Codes and Masks

Private iris codes, private masks

⟨[c⃗ ′1], [c⃗ ′2]⟩ > (1− 2 · t) · ⟨[m⃗1], [m⃗2]⟩

Share multiplied with v ∈ R is expensive in MPC

⇒ Approximate (1− 2 · t) with a
b :

b · ⟨[c⃗ ′1], [c⃗ ′2]⟩ > a · ⟨[m⃗1], [m⃗2]⟩

Problem: a · [x ] should not overflow

Tradeoff:

Larger ring ⇒ Dot product in larger ring

Keep ring size ⇒ Lift shares to larger ring in MPC

19 / 25



Benchmarks

So far this is the status of the paper:
https://eprint.iacr.org/2024/705.pdf

Singlethreaded performance (AWS Graviton3), localhost network

Dot products:

∼2M per second

Threshold comparison (including lifting):

∼10M per second

⇒ 2 Dot products + threshold comparison:

Throughput: ∼900k iris code comparisons per second

20 / 25

https://eprint.iacr.org/2024/705.pdf


Galois Rings and GPU

¢



Shamir over Galois Ring

Shamir vs. Rep3: Can we get best of both worlds?

Shamir sharing helps with RAM size dot-product compute

Replicated sharing over Z2k is more efficient for bit operations

Conversion is complex and expensive

Why not Shamir over Z2k?

Problem: Need sequence of exceptional points for Lagrange interpolation

λi =
∏
j ̸=i

j

j − i

Pairwise differences of exceptional points need to be invertible

Largest sequence of exceptional points for Z2k : 2

Cannot even do 2-party Shamir sharing...

21 / 25



Shamir over Galois Ring (cont.)

Shamir over Galois Ring Z2k [X ]/(X 2 − X − 1)!

Degree-1 polynomial with coefficients in Z2k , operations modulo (X 2 − X − 1).

Length of exceptional sequence: 2d = 4

Can do 3-party Shamir!

Naive approach: Embed Z2k in constant term of Z2k [X ]/(X 2 − X − 1).

Problem: Overhead of 2x, same as replicated sharing

22 / 25



Shamir over Galois Ring (cont.)

Packing: Embed 2 elements of Z2k as a0 + a1X into a single GR element.

Smart choice of quotient polynomial:

(a0+a1X ) ·(b0+b1X ) mod X 2−X −1 = (a0b0 + a1b1)+(a0b1+a1b0+a1b1)X

Constant term of Galois-Ring multiplication is dot-product of 2 Z2k elements.

Lagrange coefficients for reconstruction can be multiplied onto a beforehand.

Don’t even need to compute X term.

[c0 + c1X ]Add = [c0]Add + [c1]AddX = (λ · [a0 + a1X ]Shamir) · [b0 + b1X ]Shamir

⇒ Store 1 share, 1 multiplication per dot-element, cheap ring-MSB-extract

23 / 25



GPU Implementation

Dot-product well suited for GPU’s

Nvidia NCCL:

GPUs directly communicate over network

No GPU ⇔ CPU data transfer

Rust cudarc library

⇒ Execute whole protocol on multiple GPUs

Result on 3 AWS P5 instances (8x H100
GPUs, 3.2 Tbps)

Throughput: ∼2.48 billion iris code
comparisons per second

MPC

24 / 25



Conclusion

Learnings:

Consider GPUs for massively improved throughput

Clever protocol optimizations + fast hardware:

⇒ MPC can be fast enough for real world use cases with millions of users

Project status:

Predecessor (only shared dot-product) deployed

Cleartext database is deleted

Prototype of full version on GPU done

Working on error management, adding new iris to database, tracing info, . . .

⇒ Deployed in the next months

25 / 25



Questions

?



Scaling Private Iris Code Uniqueness

Checks to Millions of Users

Remco Bloemen, Daniel Kales, Philipp Sippl, Roman Walch

July 23rd, 2024

TACEO.IO

www.taceo.io


Bibliography I

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof,
Kazuma Ohara, Adi Watzman, and Or Weinstein. ‘‘Optimized Honest-Majority MPC for
Malicious Adversaries - Breaking the 1 Billion-Gate Per Second Barrier’’. In: IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2017, pp. 843–862.

[ADEN21] Mark Abspoel, Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof. ‘‘An Efficient
Passive-to-Active Compiler for Honest-Majority MPC over Rings’’. In: ACNS (2).
Vol. 12727. LNCS. Springer, 2021, pp. 122–152.

[BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. ‘‘Practical Fully Secure Three-Party
Computation via Sublinear Distributed Zero-Knowledge Proofs’’. In: CCS. ACM, 2019,
pp. 869–886.

[BKSW24] Remco Bloemen, Daniel Kales, Philipp Sippl, and Roman Walch. ‘‘Large-Scale MPC:
Scaling Private Iris Code Uniqueness Checks to Millions of Users’’. In: IACR Cryptol.
ePrint Arch. (2024), p. 705.



Bibliography II

[DEK21] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. ‘‘Fantastic Four:
Honest-Majority Four-Party Secure Computation With Malicious Security’’. In: USENIX
Security Symposium. USENIX Association, 2021, pp. 2183–2200.

[ELS+24] Kasra Edalatnejad, Wouter Lueks, Justinas Sukaitis, Vincent Graf Narbel,
Massimo Marelli, and Carmela Troncoso. ‘‘Janus: Safe Biometric Deduplication for
Humanitarian Aid Distribution’’. In: SP. IEEE, 2024, pp. 115–115.

[KPPS21] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. ‘‘SWIFT: Super-fast and
Robust Privacy-Preserving Machine Learning’’. In: USENIX Security Symposium.
USENIX Association, 2021, pp. 2651–2668.

[MR18] Payman Mohassel and Peter Rindal. ‘‘ABY3: A Mixed Protocol Framework for Machine
Learning’’. In: CCS. ACM, 2018, pp. 35–52.

[Sha79] Adi Shamir. ‘‘How to Share a Secret’’. In: Commun. ACM 22.11 (1979), pp. 612–613.



Appendix

�



Malicious Security

SPDZWise MACs for Arithmetic

Extend shares [x ] with MAC [γ] = [α · x ] using MAC-key [α]

Extend operations to also compute on MACs

MAC-check: Ensures correctness for all multiplications

Security: Operate on 64-bit shares instead of 16-bit

Triple sacrificing for Binary:

Offline Phase:

Precompute m AND triples ([x ], [y ], [z]), where [z] = [x ] ∧ [y ]

Reduce them to n valid AND triples with cut-and-choose and sacrificing

Online phase: Check each AND gate by sacrificing pre-computed triples

26 / 25



Malicious Security

SPDZWise MACs for Arithmetic

Extend shares [x ] with MAC [γ] = [α · x ] using MAC-key [α]

Extend operations to also compute on MACs

MAC-check: Ensures correctness for all multiplications

Security: Operate on 64-bit shares instead of 16-bit

Triple sacrificing for Binary:

Offline Phase:

Precompute m AND triples ([x ], [y ], [z]), where [z] = [x ] ∧ [y ]

Reduce them to n valid AND triples with cut-and-choose and sacrificing

Online phase: Check each AND gate by sacrificing pre-computed triples

26 / 25



MPC Lifting

We opt for cheaper dot product in Z216 and 16-bit accuracy for a, b

Lifting [x ]216 to [x ]232 :

Problem: Reconstruction x1 + x2 + x3 = x mod 216

⇒ x1 + x2 + x3 = x + c1 · 216 + c2 · 217 mod 232

Extract c1, c2 using 18-bit binary addition circuit

⇒ Interpret [x ]216 as [x ]232 and subtract c1 · 216 and c2 · 217

Trick: b = 216

216 · [x ]216 = [216 · x ]232

⇒ MPC lifting of ⟨[c⃗ ′1], [c⃗ ′2]⟩ is free

27 / 25



MPC Lifting

We opt for cheaper dot product in Z216 and 16-bit accuracy for a, b

Lifting [x ]216 to [x ]232 :

Problem: Reconstruction x1 + x2 + x3 = x mod 216

⇒ x1 + x2 + x3 = x + c1 · 216 + c2 · 217 mod 232

Extract c1, c2 using 18-bit binary addition circuit

⇒ Interpret [x ]216 as [x ]232 and subtract c1 · 216 and c2 · 217

Trick: b = 216

216 · [x ]216 = [216 · x ]232

⇒ MPC lifting of ⟨[c⃗ ′1], [c⃗ ′2]⟩ is free

27 / 25



Security and Comparison to Homomorphic Encryption

MPC solution:

Non-collusion assumption for computing parties

Homomorphic encryption (HE):

HE encrypted database

⇒ Key-holder with non-collusion assumption

Performance and ciphertext expansion

Addition of encrypted 16-bit integer: 100ms

Encryption of 1 iris code: 37 MB

⇒ Slower, high communication, and larger database
size expansion

28 / 25


	Introduction
	
	The Protocol
	
	Introducing MPC
	
	First Experiments
	
	Improvements
	
	Galois Rings and GPU
	
	Questions
	
	Appendix
	

