Scaling Private Iris Code Uniqueness Checks to Millions of Users

Remco Bloemen, Daniel Kales, Philipp Sippl, Roman Walch July 23rd, 2024

TACEO.IO

TACEO and Me

Т∧С≣Э

- Roman Walch
 - PhD from IAIK, TU Graz, Austria
 - MPC, FHE, ZK, and symmetric ciphers/hash functions
 - finished January 2024
 - Co-founder and lead cryptographer at TACEO
- TACEO
 - Spinoff of TU Graz
 - Currently 11 people
 - Goal is to build the encrypted compute layer
 - Allow to compute on a private shared state using MPC and ZK

Introduction

Secure Multiparty Computation (MPC)

- MPC allows mutually untrusting parties to compute functions on combined input
 - Inputs stay private
- Flexible technology
 - Many protocols and different security levels
 - Semi-honest vs. malicious security
 - Honest vs. dishonest majority
- Potential to bring privacy to many use cases!
 - Privacy-preserving data analysis
 - Threshold signatures and wallets
 - This project: Decentralization

World ID Infrastructure

- World ID
 - Digital identity linked to individuals
 - Unique identifier for each individual
 - Only humans, no Al
 - Authentication via zero-knowledge proofs
- Setup phase for new identifiers
 - Uniqueness enforced via iris scans
 - Compare new iris scan to database
 - Iris scans only used during signup

$\mathsf{Figure:}\ \textcircled{O}\ \mathsf{Worldcoin}$

Database Check

Database previously hosted by Worldcoin Foundation

- Centralized database has privacy concerns and potentially allows misuse
 - Database full with biometric data
 - Partial information about iris can be reconstructed from code
 - Deny giving out an ID for specific individuals
- \Rightarrow Decentralize iris code database
 - Split database amongst multiple organizations securely using MPC

Decentralized Iris Database using MPC

- MPC-shared database
 - Parties have random secret-shares
- Orb secret-shares new iris code
- Compute similarity check protocol in MPC
- $\Rightarrow \mbox{ No database holder learns} \\ \mbox{ database content or new iris code}$
- But: Overhead of MPC protocols

The Protocol

Iris Similarity Check Protocol

- Iris code \vec{c} with mask \vec{m}
 - Mask hides faulty bits
- Match new iris code against whole database
 - Comparison of two iris codes via fractional hamming distance

$$egin{aligned} ec{m} &= ec{m}_1 \wedge ec{m}_2 \ \texttt{ml} &= \texttt{CountOnes}(ec{m}) \ \texttt{hd} &= \texttt{CountOnes}((ec{c_1} \oplus ec{c_2}) \wedge ec{m}) \ \texttt{hd}/\texttt{ml} < t \in \mathbb{R} \end{aligned}$$

 $\Rightarrow\,$ Simple protocol, but difficult to do efficiently in MPC

MPC-Problems

- Mixed operations
 - Hamming-distance: XOR (boolean), Sum (16-bit integer)
 - Comparison and aggregation (boolean)
- Data sizes:
 - 1 iris code $\equiv 12\,800$ bits
 - Current database size: ~6 million iris codes
- Communication overhead
 - Parties exchange randomized data for each multiplication/AND gate
 - Problem for huge database!
- \Rightarrow Janus [ELS+24]: ~2k iris code comparisons per minute

Introducing MPC

Additive Secret Sharing

- Share x for n parties: $[x] = (x_1, x_2, \dots, x_n)$
 - Sample n-1 random elements $x_1, ..., x_{n-1}$
 - Last share: $x_n = x \sum_{i=1}^{n-1} x_i$
 - \Rightarrow Reconstruct: $x = \sum_{i=1}^{n} x_i$
- Properties:
 - n-1 shares have no information on x
 - All shares required for reconstruction
 - Scheme is linear!
 - Share addition, constant addition, constant multiplication can be computed without interaction
 - Share multiplication requires party-interaction

- Additive sharing, where each party has two shares
 - Share [x] = (x₁, x₂, x₃)
 - Party *i* has (x_i, x_{i-1})
- Linear operations can be computed without interaction
- Only 2 out of 3 parties required to reconstruct secret (honest majority)
- Multiplication $[z] = [x] \cdot [y]$:
 - Local part: $z_i = x_i \cdot y_i + x_{i-1} \cdot y_i + x_i \cdot y_{i-1} + r_i$... with random zero share r_i
 - Transform additive share z_i to replicated share by sending z_i to party i + 1
- Dot product $[z] = \sum_{i} [x_i] \cdot [y_i]$
 - Compute local parts of all multiplications
 - Reshare the sum

- Additive sharing, where each party has two shares
 - Share [x] = (x₁, x₂, x₃)
 - Party *i* has (x_i, x_{i-1})
- Linear operations can be computed without interaction
- Only 2 out of 3 parties required to reconstruct secret (honest majority)
- Multiplication $[z] = [x] \cdot [y]$:
 - Local part: $z_i = x_i \cdot y_i + x_{i-1} \cdot y_i + x_i \cdot y_{i-1} + r_i$... with random zero share r_i
 - Transform additive share z_i to replicated share by sending z_i to party i + 1
- Dot product $[z] = \sum_{i} [x_i] \cdot [y_i]$
 - Compute local parts of all multiplications
 - Reshare the sum

- Additive sharing, where each party has two shares
 - Share [x] = (x₁, x₂, x₃)
 - Party *i* has (x_i, x_{i-1})
- Linear operations can be computed without interaction
- Only 2 out of 3 parties required to reconstruct secret (honest majority)
- Multiplication $[z] = [x] \cdot [y]$:
 - Local part: $z_i = x_i \cdot y_i + x_{i-1} \cdot y_i + x_i \cdot y_{i-1} + r_i$... with random zero share r_i
 - Transform additive share z_i to replicated share by sending z_i to party i + 1
- Dot product $[z] = \sum_{i} [x_i] \cdot [y_i]$
 - Compute local parts of all multiplications
 - Reshare the sum

- Additive sharing, where each party has two shares
 - Share $[x] = (x_1, x_2, x_3)$
 - Party *i* has (x_i, x_{i-1})
- Linear operations can be computed without interaction
- Only 2 out of 3 parties required to reconstruct secret (honest majority)
- Multiplication $[z] = [x] \cdot [y]$:
 - Local part: $z_i = x_i \cdot y_i + x_{i-1} \cdot y_i + x_i \cdot y_{i-1} + r_i$... with random zero share r_i
 - Transform additive share z_i to replicated share by sending z_i to party i + 1
- Dot product $[z] = \sum_{i} [x_i] \cdot [y_i]$
 - Compute local parts of all multiplications
 - Reshare the sum

Shamir Sharing

- Different approach to secret sharing over field F_p:
 - Threshold sharing (k-out-of-n)
- Random polynomial with x in constant term

$$p(X) = x + a_1 \cdot X + \ldots + a_t \cdot X^t$$

 \ldots with random a_i

- Share [x] = (p(1), p(2), ..., p(n))
- Reconstruct from k = t + 1 shares using Lagrange interpolation

Shamir sharing (cont.)

- Linear operations can be computed locally on shares
- Multiplications:
 - $z_i = x_i \cdot y_i$ is valid share of $z = x \cdot y$
 - But: Polynomial degree doubles
- Our case:
 - n = 3 parties, t = 1 (honest majority)
- Multiply share with Lagrange coefficient:
 - Shamir with $t = 1 \Rightarrow 2$ -party additive
 - Shamir with t = 2 (e.g., after multiplication) \Rightarrow 3-party additive
- \Rightarrow Dot-product to replicated sharing: Only communicate result

First Experiments

Efficient Hamming Distance

- Biggest Factor in communication
- Idea: Rewrite to dot product:

$$extsf{hd}([ec{a}],[ec{b}]) = extsf{CountOnes}([ec{a}] \oplus [ec{b}]) \ = \sum_i [a_i] + \sum_i [b_i] - 2 \cdot \langle [ec{a}],[ec{b}]
angle$$

- Linear operations require no communication (sums, multiply by 2, etc.)
- 1 dot product:
 - Communication equal to one multiplication in replicated sharing or Shamir
- Optimized MPC protocol:
 - Orb shares bits over larger ring \mathbb{Z}_t , s.t. computation does not overflow
 - Use replicated sharing or Shamir sharing
 - Public masks m
 - \Rightarrow Communication independent to vector sizes

Efficient Hamming Distance

- Biggest Factor in communication
- Idea: Rewrite to dot product:

$$extsf{hd}([ec{a}],[ec{b}]) = extsf{CountOnes}([ec{a}] \oplus [ec{b}]) \ = \sum_i [a_i] + \sum_i [b_i] - 2 \cdot \langle [ec{a}],[ec{b}]
angle$$

- Linear operations require no communication (sums, multiply by 2, etc.)
- I dot product:

- Communication equal to one multiplication in replicated sharing or Shamir
- Optimized MPC protocol:
 - Orb shares bits over larger ring \mathbb{Z}_t , s.t. computation does not overflow
 - Use replicated sharing or Shamir sharing
 - Public masks *m*
 - \Rightarrow Communication independent to vector sizes

TAC=D

Threshold comparison

- What about share comparison [a] < [b]?
- If subtraction does not overflow, then rewrite to MSB extraction:

$$[a] < [b] \Leftrightarrow \texttt{MSB}([a-b])$$

 \Rightarrow Arithmetic to binary conversion:

$$x_1 + x_2 + x_3 = x \quad \Rightarrow \quad x'_1 \oplus x'_2 \oplus x'_3 = x$$

- In 3-party replicated sharing over rings \mathbb{Z}_{2^k} :
 - Split shares $[x_1] = (x_1, 0, 0), [x_2] = (0, x_2, 0), [x_3] = (0, 0, x_3)$
 - Add [x₁], [x₂], [x₃] in MPC using binary addition circuit
- More complicated in prime field \mathbb{F}_p

Security Models

- Two security models:
 - Semi-honest version of ABY3 [MR18]
 - Extension for malicious security
- Options for malicious security:
 - Triple-sacrificing (e.g., with cut-and-choose [ABF+17])
 - Distributed zero-knowledge proofs (e.g., SWIFT [KPPS21])
 - SPDZWise MACs (e.g., Fantastic Four [DEK21])
- Our Experiments:
 - Arithmetic: SPDZWise MACs
 - \Rightarrow Preserves communication being independent of vector sizes in dot products
 - Binary: Cut-and-choose based triple sacrificing
 - \Rightarrow Smallest overhead for AND gates

Experiments

Protocol	Runtime (<i>ms</i>)	Data (MB)
Plain	134	-
Semi-honest	426	0.598
wallclous	2 900	4.045

Table: Singlethreaded benchmark for DB with 100 000 iris codes.

- Low communication!
- Throughput:
 - Semi-honest: ~230k iris code comparisons per second
 - Malicious: ~34k iris code comparisons per second

First Results

- Experiments (including report): https://github.com/TaceoLabs/worldcoin-experiments
- Conclusion:
 - Focus on high-performance
 - \Rightarrow Focus on semi-honest version
- Lots of ideas for improvement

TVCED

Improvements

Masked Bitvectors

• Idea: Encode mask in iris code:

с	т	<i>c</i> ′
1	1	1
0	1	-1
?	0	0

• We show in paper:

$$\texttt{CountOnes}((ec{c_1} \oplus ec{c_2}) \land ec{m'}) < t \cdot \texttt{ml}$$

becomes

$$\langle ec{c}_1', ec{c}_2'
angle > (1 - 2 \cdot t) \cdot \texttt{ml}$$

 \Rightarrow Saves two sums and masking $\vec{c_1}$ and $\vec{c_2}$ in MPC

TVCED

Т∧с≣э

Rep3 vs. Shamir

Private iris codes, public masks

 $\langle [ec{c}_1'], [ec{c}_2']
angle > (1-2 \cdot t) \cdot \texttt{CountOnes}(ec{m}_1, ec{m}_2)$

- $\Rightarrow~1$ dot product and MSB extraction
- Replicated sharing:
 - Store 2 shares
 - 3 multiplications to calculate 1 MPC multiplications
 - Ring \mathbb{Z}_{2^k} : Cheaper MSB-extract
- Shamir sharing:
 - Store 1 share
 - 1 multiplication to calculate 1 MPC multiplications
 - Transform to replicated sharing after dot-product
 - Field \mathbb{F}_p : More expensive MSB-extract

Hiding Iris Codes and Masks

Private iris codes, private masks

$$\langle [ec{c}_1'], [ec{c}_2']
angle > (1-2 \cdot t) \cdot \langle [ec{m}_1], [ec{m}_2]
angle$$

- Share multiplied with $v \in \mathbb{R}$ is expensive in MPC
- \Rightarrow Approximate $(1 2 \cdot t)$ with $\frac{a}{b}$:

$$b \cdot \langle [ec{c}_1'], [ec{c}_2']
angle > a \cdot \langle [ec{m}_1], [ec{m}_2]
angle$$

- Problem: $a \cdot [x]$ should not overflow
- Tradeoff:
 - Larger ring \Rightarrow Dot product in larger ring
 - Keep ring size \Rightarrow Lift shares to larger ring in MPC

Benchmarks

- So far this is the status of the paper: https://eprint.iacr.org/2024/705.pdf
- Singlethreaded performance (AWS Graviton3), localhost network
- Dot products:
 - $\sim 2M$ per second
- Threshold comparison (including lifting):
 - $\bullet ~~\sim 10M \text{ per second}$
- $\Rightarrow~2$ Dot products + threshold comparison:
 - Throughput: ~900k iris code comparisons per second

Galois Rings and GPU

Shamir over Galois Ring

- Shamir vs. Rep3: Can we get best of both worlds?
 - Shamir sharing helps with RAM size dot-product compute
 - Replicated sharing over \mathbb{Z}_{2^k} is more efficient for bit operations
 - Conversion is complex and expensive

Why not Shamir over \mathbb{Z}_{2^k} ?

Problem: Need sequence of exceptional points for Lagrange interpolation

$$\lambda_i = \prod_{j \neq i} \frac{j}{j-i}$$

- Pairwise differences of exceptional points need to be invertible
- Largest sequence of exceptional points for \mathbb{Z}_{2^k} : 2
- Cannot even do 2-party Shamir sharing...

Shamir over Galois Ring (cont.)

- Shamir over Galois Ring $\mathbb{Z}_{2^k}[X]/(X^2 X 1)!$
 - Degree-1 polynomial with coefficients in \mathbb{Z}_{2^k} , operations modulo $(X^2 X 1)$.
 - Length of exceptional sequence: $2^d = 4$
 - Can do 3-party Shamir!
- Naive approach: Embed \mathbb{Z}_{2^k} in constant term of $\mathbb{Z}_{2^k}[X]/(X^2 X 1)$.
 - Problem: Overhead of 2x, same as replicated sharing

Shamir over Galois Ring (cont.)

Т∧с≣э

- Packing: Embed 2 elements of \mathbb{Z}_{2^k} as $a_0 + a_1 X$ into a single GR element.
- Smart choice of quotient polynomial:

 $(a_0+a_1X) \cdot (b_0+b_1X) \mod X^2 - X - 1 = (a_0b_0+a_1b_1) + (a_0b_1+a_1b_0+a_1b_1)X$

- Constant term of Galois-Ring multiplication is dot-product of 2 \mathbb{Z}_{2^k} elements.
 - Lagrange coefficients for reconstruction can be multiplied onto *a* beforehand.
 - Don't even need to compute *X* term.

$$[c_0 + c_1 X]_{\texttt{Add}} = [c_0]_{\texttt{Add}} + [c_1]_{\texttt{Add}} X = (\lambda \cdot [a_0 + a_1 X]_{\texttt{Shamir}}) \cdot [b_0 + b_1 X]_{\texttt{Shamir}}$$

 $\Rightarrow\,$ Store 1 share, 1 multiplication per dot-element, cheap ring-MSB-extract

GPU Implementation

- Dot-product well suited for GPU's
- Nvidia NCCL:
 - GPUs directly communicate over network
 - No GPU \Leftrightarrow CPU data transfer
 - Rust cudarc library
- \Rightarrow Execute whole protocol on multiple GPUs
- Result on 3 AWS P5 instances (8x H100 GPUs, 3.2 Tbps)
 - Throughput: ~2.48 billion iris code comparisons per second

Conclusion

- Learnings:
 - Consider GPUs for massively improved throughput
 - Clever protocol optimizations + fast hardware:
 - \Rightarrow MPC can be fast enough for real world use cases with millions of users
- Project status:
 - Predecessor (only shared dot-product) deployed
 - Cleartext database is deleted
 - Prototype of full version on GPU done
 - Working on error management, adding new iris to database, tracing info, ...
 - \Rightarrow Deployed in the next months

Questions

Scaling Private Iris Code Uniqueness Checks to Millions of Users

Remco Bloemen, Daniel Kales, Philipp Sippl, Roman Walch July 23rd, 2024

TACEO.IO

Bibliography I

- [ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. "Optimized Honest-Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per Second Barrier". In: IEEE Symposium on Security and Privacy. IEEE Computer Society, 2017, pp. 843–862.
- [ADEN21] Mark Abspoel, Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof. "An Efficient Passive-to-Active Compiler for Honest-Majority MPC over Rings". In: ACNS (2). Vol. 12727. LNCS. Springer, 2021, pp. 122–152.
- [BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. "Practical Fully Secure Three-Party Computation via Sublinear Distributed Zero-Knowledge Proofs". In: CCS. ACM, 2019, pp. 869–886.
- [BKSW24] Remco Bloemen, Daniel Kales, Philipp Sippl, and Roman Walch. "Large-Scale MPC: Scaling Private Iris Code Uniqueness Checks to Millions of Users". In: IACR Cryptol. ePrint Arch. (2024), p. 705.

Bibliography II

- [DEK21] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. "Fantastic Four: Honest-Majority Four-Party Secure Computation With Malicious Security". In: USENIX Security Symposium. USENIX Association, 2021, pp. 2183–2200.
- [ELS+24] Kasra Edalatnejad, Wouter Lueks, Justinas Sukaitis, Vincent Graf Narbel, Massimo Marelli, and Carmela Troncoso. "Janus: Safe Biometric Deduplication for Humanitarian Aid Distribution". In: SP. IEEE, 2024, pp. 115–115.
- [KPPS21] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. "SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning". In: USENIX Security Symposium. USENIX Association, 2021, pp. 2651–2668.
- [MR18] Payman Mohassel and Peter Rindal. "ABY³: A Mixed Protocol Framework for Machine Learning". In: CCS. ACM, 2018, pp. 35–52.
- [Sha79] Adi Shamir. "How to Share a Secret". In: Commun. ACM 22.11 (1979), pp. 612–613.

Appendix

Т∧с≣э

Malicious Security

- SPDZWise MACs for Arithmetic
 - Extend shares [x] with MAC $[\gamma] = [\alpha \cdot x]$ using MAC-key $[\alpha]$
 - Extend operations to also compute on MACs
 - MAC-check: Ensures correctness for all multiplications
 - Security: Operate on 64-bit shares instead of 16-bit
- Triple sacrificing for Binary:
 - Offline Phase:
 - Precompute *m* AND triples ([*x*], [*y*], [*z*]), where $[z] = [x] \land [y]$
 - Reduce them to *n* valid AND triples with cut-and-choose and sacrificing
 - Online phase: Check each AND gate by sacrificing pre-computed triples

Т∧с≣Э

Malicious Security

- SPDZWise MACs for Arithmetic
 - Extend shares [x] with MAC $[\gamma] = [\alpha \cdot x]$ using MAC-key $[\alpha]$
 - Extend operations to also compute on MACs
 - MAC-check: Ensures correctness for all multiplications
 - Security: Operate on 64-bit shares instead of 16-bit
- Triple sacrificing for Binary:
 - Offline Phase:
 - Precompute *m* AND triples ([*x*], [*y*], [*z*]), where $[z] = [x] \land [y]$
 - Reduce them to *n* valid AND triples with cut-and-choose and sacrificing
 - Online phase: Check each AND gate by sacrificing pre-computed triples

MPC Lifting

- We opt for cheaper dot product in $\mathbb{Z}_{2^{16}}$ and 16-bit accuracy for *a*, *b*
- Lifting $[x]_{2^{16}}$ to $[x]_{2^{32}}$:
 - Problem: Reconstruction $x_1 + x_2 + x_3 = x \mod 2^{16}$
 - $\Rightarrow x_1 + x_2 + x_3 = x + c_1 \cdot 2^{16} + c_2 \cdot 2^{17} \mod 2^{32}$
 - Extract c₁, c₂ using 18-bit binary addition circuit
 - \Rightarrow Interpret $[x]_{2^{16}}$ as $[x]_{2^{32}}$ and subtract $c_1\cdot 2^{16}$ and $c_2\cdot 2^{17}$
- Trick: $b = 2^{16}$
 - $\bullet 2^{16} \cdot [x]_{2^{16}} = [2^{16} \cdot x]_{2^{32}}$
 - \Rightarrow MPC lifting of $\langle [\vec{c}'_1], [\vec{c}'_2] \rangle$ is free

MPC Lifting

- We opt for cheaper dot product in $\mathbb{Z}_{2^{16}}$ and 16-bit accuracy for *a*, *b*
- Lifting $[x]_{2^{16}}$ to $[x]_{2^{32}}$:
 - Problem: Reconstruction $x_1 + x_2 + x_3 = x \mod 2^{16}$
 - $\Rightarrow x_1 + x_2 + x_3 = x + c_1 \cdot 2^{16} + c_2 \cdot 2^{17} \mod 2^{32}$
 - Extract c₁, c₂ using 18-bit binary addition circuit
 - \Rightarrow Interpret $[x]_{2^{16}}$ as $[x]_{2^{32}}$ and subtract $c_1 \cdot 2^{16}$ and $c_2 \cdot 2^{17}$
- Trick: $b = 2^{16}$
 - $\bullet \quad 2^{16} \cdot [x]_{2^{16}} = [2^{16} \cdot x]_{2^{32}}$
 - \Rightarrow MPC lifting of $\langle [\vec{c}_1'], [\vec{c}_2'] \rangle$ is free

Security and Comparison to Homomorphic Encryption

- MPC solution:
 - Non-collusion assumption for computing parties
- Homomorphic encryption (HE):
 - HE encrypted database
 - \Rightarrow Key-holder with non-collusion assumption
 - Performance and ciphertext expansion
 - Addition of encrypted 16-bit integer: 100 ms
 - Encryption of 1 iris code: 37 MB
 - $\Rightarrow\,$ Slower, high communication, and larger database size expansion

τλςξο