Scaling Private Iris Code Uniqueness Checks to Millions of Users

Remco Bloemen, Daniel Kales, Philipp Sippl, Roman Walch July 23rd, 2024

[TACEO.IO](www.taceo.io)

TACEO and Me

- Roman Walch \blacksquare
	- PhD from IAIK, TU Graz, Austria \blacksquare
		- MPC, FHE, ZK, and symmetric ciphers/hash functions \blacksquare
		- finished January 2024 \blacksquare
	- Co-founder and lead cryptographer at TACEO \blacksquare
- TACEO \blacksquare
	- Spinoff of TU Graz \blacksquare
	- Currently 11 people \blacksquare
	- Goal is to build the encrypted compute layer п
		- Allow to compute on a private shared state using MPC and ZK \blacksquare

Introduction i

Secure Multiparty Computation (MPC)

- MPC allows mutually untrusting parties to compute \blacksquare functions on combined input
	- \blacksquare Inputs stay private
- Flexible technology \blacksquare
	- Many protocols and different security levels \blacksquare
		- Semi-honest vs. malicious security \blacksquare
		- Honest vs. dishonest majority \blacksquare
- \blacksquare Potential to bring privacy to many use cases!
	- Privacy-preserving data analysis \blacksquare
	- Threshold signatures and wallets П
	- This project: Decentralization п

World ID Infrastructure

- World ID \blacksquare
	- Digital identity linked to individuals \blacksquare
	- Unique identifier for each individual \blacksquare
	- Only humans, no AI \blacksquare
	- Authentication via zero-knowledge proofs \blacksquare
- Setup phase for new identifiers \blacksquare
	- Uniqueness enforced via iris scans \blacksquare
	- Compare new iris scan to database \blacksquare
	- Iris scans only used during signup \blacksquare

Figure: © Worldcoin

Database Check

Database previously hosted by Worldcoin Foundation \blacksquare

- Centralized database has privacy concerns and \blacksquare potentially allows misuse
	- Database full with biometric data \blacksquare
	- Partial information about iris can be reconstructed \blacksquare from code
	- Deny giving out an ID for specific individuals \blacksquare
- ⇒ Decentralize iris code database
	- Split database amongst multiple organizations \blacksquare securely using MPC

Decentralized Iris Database using MPC

- MPC-shared database \blacksquare
	- Parties have random \blacksquare secret-shares
- Orb secret-shares new iris code \blacksquare
- Compute similarity check П protocol in MPC
- ⇒ No database holder learns database content or new iris code
- But: Overhead of MPC protocols \blacksquare

The Protocol 2

Iris Similarity Check Protocol

- Iris code \vec{c} with mask \vec{m} \blacksquare
	- Mask hides faulty bits \blacksquare
- Match new iris code against whole database \blacksquare
	- Comparison of two iris codes via fractional hamming distance \blacksquare

$$
\begin{aligned}&\vec{m}=\vec{m}_1\wedge\vec{m}_2\\&\texttt{ml}=\texttt{CountOnes}(\vec{m})\\&\text{hd}=\texttt{CountOnes}((\vec{c}_1\oplus\vec{c}_2)\wedge\vec{m})\\&\text{hd/m1}
$$

 \Rightarrow Simple protocol, but difficult to do efficiently in MPC

MPC-Problems

- Mixed operations \blacksquare
	- Hamming-distance: XOR (boolean), Sum (16-bit integer) \blacksquare
	- Comparison and aggregation (boolean) \blacksquare
- Data sizes: \blacksquare
	- 1 iris code $= 12800$ bits \blacksquare
	- Current database size: ∼6 million iris codes \blacksquare
- Communication overhead \blacksquare
	- Parties exchange randomized data for each multiplication/AND gate \blacksquare
	- Problem for huge database! \blacksquare
- ⇒ Janus [\[ELS+24\]](#page-39-0): ∼2k iris code comparisons per minute

Introducing MPC 909

Additive Secret Sharing

- Share x for *n* parties: $[x] = (x_1, x_2, \ldots, x_n)$ п
	- Sample $n-1$ random elements $x_1, ..., x_{n-1}$ \blacksquare
	- Last share: $x_n = x \sum_{i=1}^{n-1} x_i$
	- \Rightarrow Reconstruct: $x = \sum_{i=1}^{n} x_i$
- Properties:
	- $n 1$ shares have no information on x
	- All shares required for reconstruction п
	- Scheme is linear! \blacksquare
	- Share addition, constant addition, constant multiplication can be computed without interaction
	- Share multiplication requires party-interaction ш

y

- Additive sharing, where each party has two shares \blacksquare
	- Share $[x] = (x_1, x_2, x_3)$ \blacksquare
	- \blacksquare Party *i* has (x_i, x_{i-1})
- \mathbb{R}^d
- Only 2 out of 3 parties required to reconstruct secret (honest majority) \mathbb{R}^d
- Multiplication $[z] = [x] \cdot [y]$: \mathbb{R}^n
	- Local part: $z_i = x_i \cdot y_i + x_{i-1} \cdot y_i + x_i \cdot y_{i-1} + r_i$... with random zero share r_i m. Transform additive share z_i to replicated share by sending z_i to party $i+1$ $\mathcal{L}_{\mathcal{A}}$
- Dot product $[z] = \sum_i [x_i] \cdot [y_i]$ ± 1
	- Compute local parts of all multiplications m.
	- \mathbb{R}^n

- Additive sharing, where each party has two shares \blacksquare
	- Share $[x] = (x_1, x_2, x_3)$
	- \blacksquare Party *i* has (x_i, x_{i-1})
- Linear operations can be computed without interaction \blacksquare
- Only 2 out of 3 parties required to reconstruct secret (honest majority) \blacksquare
- Multiplication $[z] = [x] \cdot [y]$: \mathbb{R}^n
	- Local part: $z_i = x_i \cdot y_i + x_{i-1} \cdot y_i + x_i \cdot y_{i-1} + r_i$... with random zero share r_i m.
	- Transform additive share z_i to replicated share by sending z_i to party $i + 1$ $\mathcal{L}_{\mathcal{A}}$
- Dot product $[z] = \sum_i [x_i] \cdot [y_i]$ \mathbb{R}^n
	- Compute local parts of all multiplications m.
	- m.

- Additive sharing, where each party has two shares \blacksquare
	- Share $[x] = (x_1, x_2, x_3)$
	- \blacksquare Party *i* has (x_i, x_{i-1})
- Linear operations can be computed without interaction \blacksquare
- Only 2 out of 3 parties required to reconstruct secret (honest majority) \blacksquare
- Multiplication $[z] = [x] \cdot [y]$: \blacksquare
	- Local part: $z_i = x_i \cdot y_i + x_{i-1} \cdot y_i + x_i \cdot y_{i-1} + r_i$... with random zero share r_i \blacksquare
	- Transform additive share z_i to replicated share by sending z_i to party $i + 1$ \blacksquare
- Dot product $[z] = \sum_i [x_i] \cdot [y_i]$
	- Compute local parts of all multiplications m.
	- m.

- Additive sharing, where each party has two shares \blacksquare
	- Share $[x] = (x_1, x_2, x_3)$
	- \blacksquare Party *i* has (x_i, x_{i-1})
- Linear operations can be computed without interaction \blacksquare
- Only 2 out of 3 parties required to reconstruct secret (honest majority) \blacksquare
- Multiplication $[z] = [x] \cdot [y]$: \blacksquare
	- Local part: $z_i = x_i \cdot y_i + x_{i-1} \cdot y_i + x_i \cdot y_{i-1} + r_i$... with random zero share r_i \blacksquare
	- Transform additive share z_i to replicated share by sending z_i to party $i + 1$ \blacksquare
- Dot product $[z] = \sum_i [x_i] \cdot [y_i]$ \blacksquare
	- Compute local parts of all multiplications \blacksquare
	- Reshare the sum \blacksquare

Shamir Sharing

- Different approach to secret sharing over field \mathbb{F}_{p} : \blacksquare
	- Threshold sharing $(k$ -out-of-n) \blacksquare
- Random polynomial with x in constant term \blacksquare

$$
p(X) = x + a_1 \cdot X + \ldots + a_t \cdot X^t
$$

 \dots with random a_i

- Share $[x] = (p(1), p(2), \ldots, p(n))$ п
- Reconstruct from $k = t + 1$ shares using Lagrange interpolation П

Shamir sharing (cont.)

- Linear operations can be computed locally on shares \blacksquare
- Multiplications: \blacksquare
	- $z_i = x_i \cdot y_i$ is valid share of $z = x \cdot y$
	- But: Polynomial degree doubles \blacksquare
- Our case: \blacksquare
	- $n = 3$ parties, $t = 1$ (honest majority)
- Multiply share with Lagrange coefficient: \blacksquare
	- Shamir with $t = 1 \Rightarrow 2$ -party additive \blacksquare
	- Shamir with $t = 2$ (e.g., after multiplication) \Rightarrow 3-party additive \blacksquare
- \Rightarrow Dot-product to replicated sharing: Only communicate result

First Experiments 2

Efficient Hamming Distance

- Biggest Factor in communication П
- Idea: Rewrite to dot product: \blacksquare

$$
\begin{aligned} \mathtt{hd}([\bar a], [\vec b]) &= \mathtt{CountOnes}([\bar a] \oplus [\vec b]) \\ &= \sum_i [a_i] + \sum_j [b_i] - 2 \cdot \langle [\bar a], [\vec b] \rangle \end{aligned}
$$

- Linear operations require no communication (sums, multiply by 2, etc.) п
- 1 dot product: \blacksquare
	- Communication equal to one multiplication in replicated sharing or Shamir \blacksquare
- Optimized MPC protocol: \mathbb{R}^n
	- Orb shares bits over larger ring \mathbb{Z}_t , s.t. computation does not overflow ш
	- Use replicated sharing or Shamir sharing \blacksquare
	- Public masks \vec{m} m.
	- \Rightarrow Communication independent to vector sizes 12 / 25 \rightarrow 12 \rightarrow 12/25

Efficient Hamming Distance

- Biggest Factor in communication П
- Idea: Rewrite to dot product: \blacksquare

$$
\begin{aligned} \mathtt{hd}([\bar a], [\vec b]) &= \mathtt{CountOnes}([\bar a] \oplus [\vec b]) \\ &= \sum_i [a_i] + \sum_j [b_i] - 2 \cdot \langle [\bar a], [\vec b] \rangle \end{aligned}
$$

- Linear operations require no communication (sums, multiply by 2, etc.) \blacksquare
- 1 dot product: \blacksquare
	- Communication equal to one multiplication in replicated sharing or Shamir \mathbf{r}
- Optimized MPC protocol: \blacksquare
	- Orb shares bits over larger ring \mathbb{Z}_t , s.t. computation does not overflow \blacksquare
	- Use replicated sharing or Shamir sharing \blacksquare
	- Public masks \vec{m} \blacksquare
	- \Rightarrow Communication independent to vector sizes 12 / 25

Threshold comparison

- What about share comparison $[a] < [b]$? \blacksquare
- If subtraction does not overflow, then rewrite to MSB extraction: \blacksquare

$$
[a] < [b] \Leftrightarrow \texttt{MSB}([a - b])
$$

 \Rightarrow Arithmetic to binary conversion:

$$
x_1 + x_2 + x_3 = x \quad \Rightarrow \quad x'_1 \oplus x'_2 \oplus x'_3 = x
$$

- In 3-party replicated sharing over rings \mathbb{Z}_{2^k} : \blacksquare
	- Split shares $[x_1] = (x_1, 0, 0), [x_2] = (0, x_2, 0), [x_3] = (0, 0, x_3)$ \blacksquare
	- Add $[x_1]$, $[x_2]$, $[x_3]$ in MPC using binary addition circuit \blacksquare
- More complicated in prime field \mathbb{F}_p п

Security Models

- Two security models: \blacksquare
	- Semi-honest version of ABY3 [\[MR18\]](#page-39-1) \blacksquare
	- Extension for malicious security \blacksquare
- Options for malicious security: \blacksquare
	- Triple-sacrificing (e.g., with cut-and-choose [\[ABF+17\]](#page-38-0)) \blacksquare
	- Distributed zero-knowledge proofs (e.g., SWIFT [\[KPPS21\]](#page-39-2)) \blacksquare
	- SPDZWise MACs (e.g., Fantastic Four [\[DEK21\]](#page-39-3)) \blacksquare
- Our Experiments: \blacksquare
	- Arithmetic: SPDZWise MACs \blacksquare
	- \Rightarrow Preserves communication being independent of vector sizes in dot products
	- Binary: Cut-and-choose based triple sacrificing п
	- \Rightarrow Smallest overhead for AND gates

Experiments

Table: Singlethreaded benchmark for DB with 100 000 iris codes.

- Low communication! \blacksquare
- Throughput: \blacksquare
	- Semi-honest: ∼230k iris code comparisons per second \blacksquare
	- Malicious: ∼34k iris code comparisons per second \blacksquare

First Results

- Experiments (including report): \blacksquare <https://github.com/TaceoLabs/worldcoin-experiments>
- Conclusion: \blacksquare
	- Focus on high-performance \blacksquare
	- ⇒ Focus on semi-honest version
- Lots of ideas for improvement \blacksquare

CEDAT

Improvements $\boldsymbol{\phi}_{\alpha}^{\alpha}$

Masked Bitvectors

TACED

Idea: Encode mask in iris code:

■ We show in paper:

$$
\mathtt{CountOnes}((\vec{c_1}\oplus \vec{c_2})\wedge \vec{m}') < t\cdot \mathtt{ml}
$$

becomes

$$
\langle \vec{c}_1', \vec{c}_2' \rangle > (1-2 \cdot t) \cdot \mathtt{ml}
$$

 \Rightarrow Saves two sums and masking \vec{c}_1 and \vec{c}_2 in MPC

TACEJ

Rep3 vs. Shamir

Private iris codes, public masks \blacksquare

 $\langle [\vec{c}^{\prime}_1], [\vec{c}^{\prime}_2] \rangle > (1-2 \cdot t) \cdot \text{CountOnes}(\vec{m}_1, \vec{m}_2)$

- \Rightarrow 1 dot product and MSB extraction
- Replicated sharing: \blacksquare
	- Store 2 shares \blacksquare
	- 3 multiplications to calculate 1 MPC multiplications \blacksquare
	- $Ring\ \mathbb{Z}_{2^k}$: Cheaper MSB-extract \blacksquare
- Shamir sharing: \blacksquare
	- Store 1 share \blacksquare
	- 1 multiplication to calculate 1 MPC multiplications \blacksquare
	- Transform to replicated sharing after dot-product \blacksquare
	- Field \mathbb{F}_p : More expensive MSB-extract \blacksquare

Hiding Iris Codes and Masks

Private iris codes, private masks \blacksquare

$$
\langle[\vec{c}^{\prime}_1],[\vec{c}^{\prime}_2]\rangle>(1-2\cdot t)\cdot\langle[\vec{m}_1],[\vec{m}_2]\rangle
$$

- Share multiplied with $v \in \mathbb{R}$ is expensive in MPC \blacksquare
- \Rightarrow Approximate $(1-2 \cdot t)$ with $\frac{a}{b}$:

$$
b \cdot \langle [\vec{c}_1'], [\vec{c}_2'] \rangle > a \cdot \langle [\vec{m}_1], [\vec{m}_2] \rangle
$$

- Problem: $a \cdot [x]$ should not overflow \blacksquare
- Tradeoff: \blacksquare
	- Larger ring \Rightarrow Dot product in larger ring \blacksquare
	- Keep ring size \Rightarrow Lift shares to larger ring in MPC \blacksquare

Benchmarks

- So far this is the status of the paper: \blacksquare <https://eprint.iacr.org/2024/705.pdf>
- Singlethreaded performance (AWS Graviton3), localhost network \blacksquare
- Dot products: п
	- ∼2M per second \blacksquare
- Threshold comparison (including lifting): \blacksquare
	- ∼10M per second \blacksquare
- \Rightarrow 2 Dot products + threshold comparison:
	- Throughput: ∼900k iris code comparisons per second \blacksquare

Galois Rings and GPU $\overline{\mathbf{v}}$

Shamir over Galois Ring

- Shamir vs. Rep3: Can we get best of both worlds? \blacksquare
	- Shamir sharing helps with RAM size dot-product compute \blacksquare
	- Replicated sharing over \mathbb{Z}_{2^k} is more efficient for bit operations \blacksquare
	- Conversion is complex and expensive \blacksquare

Why not Shamir over \mathbb{Z}_{2^k} ?

Problem: Need sequence of exceptional points for Lagrange interpolation п

$$
\lambda_i = \prod_{j \neq i} \frac{j}{j - i}
$$

- Pairwise differences of exceptional points need to be invertible п
- Largest sequence of exceptional points for \mathbb{Z}_{2^k} : 2 \blacksquare
- Cannot even do 2-party Shamir sharing... \blacksquare

Shamir over Galois Ring (cont.)

- Shamir over Galois Ring $\mathbb{Z}_{2^k}[X]/(X^2-X-1)!$
	- Degree-1 polynomial with coefficients in \mathbb{Z}_{2^k} , operations modulo (X^2-X-1) . \blacksquare
	- Length of exceptional sequence: $2^d = 4$ \blacksquare
	- Can do 3-party Shamir! \blacksquare
- Naive approach: Embed \mathbb{Z}_{2^k} in constant term of $\mathbb{Z}_{2^k}[X]/(X^2-X-1)$. п
	- Problem: Overhead of 2x, same as replicated sharing \blacksquare

Shamir over Galois Ring (cont.)

TAC:

- Packing: Embed 2 elements of \mathbb{Z}_{2^k} as $a_0 + a_1X$ into a single GR element. \blacksquare
- Smart choice of quotient polynomial: \blacksquare

 $(a_0 + a_1 X) \cdot (b_0 + b_1 X)$ mod $X^2 - X - 1 = (a_0 b_0 + a_1 b_1) + (a_0 b_1 + a_1 b_0 + a_1 b_1)X$

- Constant term of Galois-Ring multiplication is dot-product of 2 \mathbb{Z}_{2^k} elements. \blacksquare
	- Lagrange coefficients for reconstruction can be multiplied onto a beforehand. \blacksquare
	- Don't even need to compute X term. \blacksquare

$$
[c_0+c_1X]_{\text{Add}}=[c_0]_{\text{Add}}+[c_1]_{\text{Add}}X=(\lambda\cdot [a_0+a_1X]_{\text{Shamir}})\cdot [b_0+b_1X]_{\text{Shamir}}
$$

 \Rightarrow Store 1 share, 1 multiplication per dot-element, cheap ring-MSB-extract

GPU Implementation

- Dot-product well suited for GPU's \blacksquare
- Nvidia NCCL: \blacksquare
	- GPUs directly communicate over network \blacksquare
	- No GPU ⇔ CPU data transfer \blacksquare
	- Rust cudarc library \blacksquare
- \Rightarrow Execute whole protocol on multiple GPUs
- Result on 3 AWS P5 instances (8x H100 \blacksquare GPUs, 3.2 Tbps)
	- \blacksquare Throughput: ∼2.48 billion iris code comparisons per second

TACE?

Conclusion

- Learnings: \blacksquare
	- Consider GPUs for massively improved throughput \blacksquare
	- \blacksquare Clever protocol optimizations $+$ fast hardware:
	- \Rightarrow MPC can be fast enough for real world use cases with millions of users
- Project status: \blacksquare
	- Predecessor (only shared dot-product) deployed \blacksquare
		- Cleartext database is deleted \blacksquare
	- \blacksquare Prototype of full version on GPU done
	- Working on error management, adding new iris to database, tracing info, ... п
	- \Rightarrow Deployed in the next months

Questions ?

Scaling Private Iris Code Uniqueness Checks to Millions of Users

Remco Bloemen, Daniel Kales, Philipp Sippl, Roman Walch July 23rd, 2024

[TACEO.IO](www.taceo.io)

Bibliography I

- [ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. ''Optimized Honest-Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per Second Barrier''. In: IEEE Symposium on Security and Privacy. IEEE Computer Society, 2017, pp. 843–862.
- [ADEN21] Mark Abspoel, Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof. ''An Efficient Passive-to-Active Compiler for Honest-Majority MPC over Rings''. In: ACNS (2). Vol. 12727. LNCS. Springer, 2021, pp. 122–152.
- [BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. ''Practical Fully Secure Three-Party Computation via Sublinear Distributed Zero-Knowledge Proofs''. In: CCS. ACM, 2019, pp. 869–886.
- [BKSW24] Remco Bloemen, Daniel Kales, Philipp Sippl, and Roman Walch. ''Large-Scale MPC: Scaling Private Iris Code Uniqueness Checks to Millions of Users''. In: IACR Cryptol. ePrint Arch. (2024), p. 705.

Bibliography II

- [DEK21] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. ''Fantastic Four: Honest-Majority Four-Party Secure Computation With Malicious Security''. In: USENIX Security Symposium. USENIX Association, 2021, pp. 2183–2200.
- [ELS+24] Kasra Edalatnejad, Wouter Lueks, Justinas Sukaitis, Vincent Graf Narbel, Massimo Marelli, and Carmela Troncoso. ''Janus: Safe Biometric Deduplication for Humanitarian Aid Distribution''. In: SP. IEEE, 2024, pp. 115–115.
- [KPPS21] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. ''SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning''. In: USENIX Security Symposium. USENIX Association, 2021, pp. 2651–2668.
- [MR18] Payman Mohassel and Peter Rindal. "ABY³: A Mixed Protocol Framework for Machine Learning''. In: CCS. ACM, 2018, pp. 35–52.
- [Sha79] Adi Shamir. ''How to Share a Secret''. In: Commun. ACM 22.11 (1979), pp. 612–613.

Appendix 8

Malicious Security

- SPDZWise MACs for Arithmetic \blacksquare
	- Extend shares [x] with MAC $[\gamma] = [\alpha \cdot x]$ using MAC-key [α] \blacksquare
		- Extend operations to also compute on MACs \blacksquare
	- MAC-check: Ensures correctness for all multiplications \blacksquare
	- Security: Operate on 64-bit shares instead of 16-bit п
- Triple sacrificing for Binary: \mathbb{R}^2
	- Offline Phase: m.
		- Precompute *m* AND triples ([x], [y], [z]), where $[z] = [x] \wedge [y]$ \mathbb{R}^n
		- Reduce them to *n* valid AND triples with cut-and-choose and sacrificing \mathbb{R}^2
	- Online phase: Check each AND gate by sacrificing pre-computed triples m.

Malicious Security

- SPDZWise MACs for Arithmetic \blacksquare
	- Extend shares [x] with MAC $[\gamma] = [\alpha \cdot x]$ using MAC-key [α] \blacksquare
		- Extend operations to also compute on MACs \blacksquare
	- MAC-check: Ensures correctness for all multiplications \blacksquare
	- Security: Operate on 64-bit shares instead of 16-bit \blacksquare
- Triple sacrificing for Binary: \blacksquare
	- Offline Phase: \blacksquare
		- Precompute m AND triples ([x], [y], [z]), where $[z] = [x] \wedge [y]$ \blacksquare
		- Reduce them to *n* valid AND triples with cut-and-choose and sacrificing \blacksquare
	- Online phase: Check each AND gate by sacrificing pre-computed triples \blacksquare

MPC Lifting

- We opt for cheaper dot product in $\mathbb{Z}_{2^{16}}$ and 16-bit accuracy for a, b \blacksquare
- Lifting $[x]_{2^{16}}$ to $[x]_{2^{32}}$: \blacksquare
	- Problem: Reconstruction $x_1 + x_2 + x_3 = x \mod 2^{16}$ \blacksquare
	- \Rightarrow $x_1 + x_2 + x_3 = x + c_1 \cdot 2^{16} + c_2 \cdot 2^{17}$ mod 2³²
	- Extract c_1 , c_2 using 18-bit binary addition circuit \blacksquare
	- \Rightarrow Interpret $[x]_{2^{16}}$ as $[x]_{2^{32}}$ and subtract $c_1 \cdot 2^{16}$ and $c_2 \cdot 2^{17}$
- **Trick:** $b = 2^{16}$
	- $2^{16}\cdot [\mathrm{\mathsf{x}}]_{2^{16}} = [2^{16}\cdot \mathrm{\mathsf{x}}]_{2^{32}}$
	-

MPC Lifting

- We opt for cheaper dot product in $\mathbb{Z}_{2^{16}}$ and 16-bit accuracy for a, b \blacksquare
- Lifting $[x]_{2^{16}}$ to $[x]_{2^{32}}$: \blacksquare
	- Problem: Reconstruction $x_1 + x_2 + x_3 = x \mod 2^{16}$ \blacksquare
	- \Rightarrow $x_1 + x_2 + x_3 = x + c_1 \cdot 2^{16} + c_2 \cdot 2^{17}$ mod 2³²
	- Extract c_1 , c_2 using 18-bit binary addition circuit \blacksquare
	- \Rightarrow Interpret $[x]_{2^{16}}$ as $[x]_{2^{32}}$ and subtract $c_1 \cdot 2^{16}$ and $c_2 \cdot 2^{17}$
- Trick: $h = 2^{16}$ \mathbf{r}
	- $2^{16} \cdot [x]_{2^{16}} = [2^{16} \cdot x]_{2^{32}}$
	- \Rightarrow MPC lifting of $\langle [\vec{c}_1^\prime], [\vec{c}_2^\prime] \rangle$ is free

Security and Comparison to Homomorphic Encryption

- MPC solution: \blacksquare
	- Non-collusion assumption for computing parties \blacksquare
- Homomorphic encryption (HE): \blacksquare
	- HE encrypted database \blacksquare
	- \Rightarrow Key-holder with non-collusion assumption
	- Performance and ciphertext expansion \blacksquare
		- Addition of encrypted 16-bit integer: 100 ms \blacksquare
		- Encryption of 1 iris code: 37 MB \blacksquare
	- \Rightarrow Slower, high communication, and larger database size expansion

TACEO