

Scaling Private Iris Code Uniqueness Checks to Millions of Users

Remco Bloemen, Daniel Kales, Philipp Sippl, Roman Walch
June 5th, 2024

WWW.TACEO.IO

Real World MPC Use Case

- Partnered with Worldcoin for large MPC use case
- World ID:
 - Unique ID for humans, no duplication, no AI
 - Enforced by comparing iris to database
 - Privacy problems!
- \Rightarrow Distribute database using MPC
- Previous state-of-the-art: Janus [ELS+24]
 - MPC throughput: 2k iris codes per minute
 - Solution using TEEs: 160k per second
- Worldcoin database: \approx 6 million and growing fast

The (Simplified) Protocol

- Comparison of two iris codes:
 - Calculate hamming distance

$$\mathtt{hd} = \mathtt{PopCount}(ec{c_1} \oplus ec{c_2})$$

- Compare to a threshold hd < t
- Problems: Mixed operations and large sizes
 - Hamming-distance: XOR and Sum
 - Comparison and aggregation (Boolean)
 - 12800 bits per iris code
 - 6 million entries in database

Better Hamming Distance

Rewrite hamming distance to dot product:

$$\operatorname{hd}(\vec{a}, \vec{b}) = \sum_{i} a_{i} + \sum_{i} b_{i} - 2 \cdot \langle \vec{a}, \vec{b} \rangle$$

- In honest majority protocols:
 - Communication independent to iris code size
 - ⇒ Huge decrease of communication
- 3-party protocol:
 - Shamir sharing for dot-product
 - Replicated sharing for threshold comparison and result aggregation

GPU Implementation

- Dot-product well suited for GPU's
- Nvidia NCCL:
 - GPUs directly communicate over network
 - No GPU ⇔ CPU data transfer
- ⇒ Execute whole protocol on multiple GPUs
- Result on 3 AWS P5 instances (8x H100 GPUs, 3.2 Tbps) \$\$\$
 - Throughput: 2.48 billion iris code comparisons per second

Conclusion

- Learnings:
 - Consider GPUs for massively improved throughput
 - Clever protocol optimizations + fast hardware:
 - ⇒ MPC can be fast enough for real world use cases with millions of users
- Project status:
 - Predecessor (only shared dot-product) deployed
 - Prototype of full version done
 - ⇒ Deployed in the next months
- More details with more optimizations:
 - https://ia.cr/2024/705

Bibliography I

[ELS+24] Kasra Edalatnejad, Wouter Lueks, Justinas Sukaitis, Vincent Graf Narbel, Massimo Marelli, and Carmela Troncoso. "Janus: Safe Biometric Deduplication for Humanitarian Aid Distribution". In: SP. IEEE, 2024, pp. 115–115.