Monolith: May the Speed of SHA-3 be With You

Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, Markus Schofnegger, **Roman Walch**

20.09.2023

Motivation

- Cryptographic hash functions integral for ZK use cases
 - Membership in Merkle trees
 - Anonymous transactions/credentials
 - ZK rollups
 - Recursive SNARKs
- New hash functions optimized for ZK:
 - Poseidon, Rescue, Griffin, ...
- Performance:
 - ✓ Significantly outperform e.g. SHA-3 inside ZK circuits
 - X Orders of magnitude slower for hashing

т∧с≣э

Plain Hashing Performance

- Plain hashing performance can be bottleneck
- Example: Recursive proofs (e.g., for signature aggregation using STARKs)
 - Build Merkle trees outside circuit and open them inside ZK circuits
 - \Rightarrow Slow hashing performance:

Merkle tree generation up to half of overall proof time [COS20; Pol22]

- Hash functions design criteria:
 - Low number of multiplications for ZK performance
 - Low number of total operations for plain performance
 - How to achieve?
- \Rightarrow Use lookup arguments in modern proof systems

Т∧С≣Э

Plain Hashing Performance

- Plain hashing performance can be bottleneck
- Example: Recursive proofs (e.g., for signature aggregation using STARKs)
 - Build Merkle trees outside circuit and open them inside ZK circuits
 - \Rightarrow Slow hashing performance:

Merkle tree generation up to half of overall proof time [COS20; Pol22]

- Hash functions design criteria:
 - Low number of multiplications for ZK performance
 - Low number of total operations for plain performance
 - How to achieve?
- $\Rightarrow\,$ Use lookup arguments in modern proof systems

Т∧с≣э

Reinforced Concrete

- First arithmetization friendly hash function optimized for lookup tables
- 3 types of layer:
 - Concrete: Affine mixing
 - Bricks: Arithmetic non-linear layer
 - Bars: Decomposition and lookup table
 - Lookup represents repeated $(x + a)^d$
- Security:
 - One Bars layer for algebraic security
 - 6 Concrete / Bricks for statistical security

Т∧с≣э

Reinforced Concrete (cont.)

- Faster than any previously published arithmetization oriented hash function
 - When using lookup tables
- But still significantly slower than e.g. SHA-3
- Fixed state size of 3 field elements
 - \Rightarrow Only for large prime fields pprox 256 bits
 - E.g., KZG based proof systems
- Decomposition is slow and difficult to generalize
- Arithmetic function in lookup table
 - Slow without lookup table (side channel attacks?)
 - Only efficient in proof systems with lookup tables

ТЛСЕЭ

Goal

- New Hash function:
 - Efficient plain performance
 - Implementable without lookup tables to resist side-channel attacks
 - Efficient proof system representation
 - Utilize lookup arguments for fewer constraints
- Focus on FRI-based proof systems
 - Small prime-fields with fast modular reductions
 - $p_{\text{Goldilocks}} = 2^{64} 2^{32} + 1$ (e.g. Plonky2 [Pol22])
 - *p*_{Mersenne} = 2³¹ 1 (e.g. Plonky3 [Pol23])
- \Rightarrow Monolith

Monolith

The Monolith Permutation

• One round (state size $t \ge 8$):

Т∧с≣Э

Bricks

Non-linear layer constructed from a quadratic Feistel

$$\mathtt{Bricks}(x_1, x_2, \ldots, x_t) := (x_1, x_2 + x_1^2, x_3 + x_2^2, \ldots, x_t + x_{t-1}^2).$$

- Efficient in plain and in proof systems
 - Small number of multiplications, low-degree polynomials
- Good statistical properties

ТЛС≣Э

Concrete

- Affine layer $M_t \cdot x + c^{(i)}$
 - ... with circular MDS matrix M_t
- Fast to compute using FFT
- Good statistical properties:
 - Optimal branch number is t + 1
- $\Rightarrow {\rm Together \ with \ Bricks \ provides \ strong} \\ {\rm statistical \ security}$

	(23	8	13	10	7	6	21	8 /
	8	23	8	13	10	7	6	21
	21	21 8 23 8 13 10	10	7	6			
N /	6	21	8	23	8	13	10	7
$N_8 =$	7	6	21	8	23	8	13	10
	10	7	6	21	8	23	8	13
	13	10	7	6	21	8	23	8
	8/	13	10	7	6	21	8	23/

Bars

- Binary non-linear layer
- Decompose \rightarrow S-box \rightarrow Compose:
 - Split into 8-bit limbs
 - SHA-3-like S-box on each limb:

 $S(x) = x \oplus ((\overline{x} \lll 1) \odot (x \lll 2) \odot (x \lll 3)) \lll 1,$

- \Rightarrow Provides strong algebraic security
- Efficient in
 - . . . proof system due to lookup table
 - ... plain due to fast vectorized implementation

Performance

~

(For $p_{Goldilocks}$)

Т∧с≣э

Modes of operation

- 2:1 compression:
 - Smaller state size is sufficient
 - E.g., for Merkle tree with fixed depth
- General-purpose hashing:
 - Sponge mode
 - Slightly larger state size

Т∧с≣Э

Plain Hashing Performance (Rust)

Hashing algorithm	Time for one permut 2-to-1 compression	ation (<i>ns</i>) sponge
$p_{\tt Goldilocks} = 2^{64} - 2^{32} + 1$:	t = 8	t = 12
Monolith-64 Tip5 ($t = 16$)	129.9	210.5 463.6
Tip4'		247.9
Poseidon	1897.6	3288.7
Poseidon2	944.6	1291.5
Other:		
Reinforced Concrete (BN254)		1467.1
SHA3-256		189.8
SHA-256	45.3	

- Monolith is faster than competitors
 - Similar performance to SHA-3

Constant Time Performance

- Resisting side-channel attacks is important, even in ZK use cases
 - E.g., recently shown at Usenix by [TBP20]

Plonkish Performance: Constraining Bars

- Decomposition and binary S-box in \mathbb{F}_p
- Composition/decomposition constraints
 - \Rightarrow 8 new witnesses x_i and 8 new witnesses y_i

$$x = \sum_{i=0}^{7} x_i \cdot 2^{8i}$$
, and $y = \sum_{i=0}^{7} y_i \cdot 2^{8i}$

• Lookup constraint for SHA-3-like S-box (includes range check $x_i < 2^8$ and $y_i < 2^8$)

 $(x_i, y_i) \in T[x, y], \quad \text{ for } 0 \leq i < 8$

- Equality for $x = \sum_{i=0}^{7} x_i \cdot 2^{8i} \mod p_{\text{Goldilocks}}$?
 - Problem: x_i which represent $x \ge p_{Goldilocks}$

Plonkish Performance: Constraining Bars (cont.)

- Maximum value is $p_{Goldilocks} 1 = 0$ xFFFF FFFF 0000 0000
- Forbid $x_7 = x_6 = x_5 = x_4 = 0$ xFF if any $x_i \neq 0$ x00 for $0 \le i < 4$

Two new witnesses z, z' and constraints

$$(x_4 2^{24} + x_3 2^{16} + x_2 2^8 + x_1) \cdot (x_8 2^{24} + x_7 2^{16} + x_6 2^8 + x_5 - z) = 0$$

(z - 2³² + 1) \cdot z' = 1

- Not required for output y
 - S-box ensures S(0x00) = 0x00 and S(0xFF) = 0xFF
 - \Rightarrow Every valid x leads to a valid y

Plonkish Performance: Constraining Bars (cont.)

- Maximum value is $p_{Goldilocks} 1 = 0$ xFFFF FFFF 0000 0000
- Forbid $x_7 = x_6 = x_5 = x_4 = 0$ xFF if any $x_i \neq 0$ x00 for $0 \le i < 4$
- Two new witnesses z, z' and constraints

$$\begin{aligned} (x_4 2^{24} + x_3 2^{16} + x_2 2^8 + x_1) \cdot (x_8 2^{24} + x_7 2^{16} + x_6 2^8 + x_5 - z) &= 0\\ (z - 2^{32} + 1) \cdot z' &= 1 \end{aligned}$$

- Not required for output y
 - S-box ensures S(0x00) = 0x00 and S(0xFF) = 0xFF
 - \Rightarrow Every valid x leads to a valid y

Plonkish Performance: Constraining Bars (cont.)

- Maximum value is $p_{Goldilocks} 1 = 0$ xFFFF FFFF 0000 0000
- Forbid $x_7 = x_6 = x_5 = x_4 = 0$ xFF if any $x_i \neq 0$ x00 for $0 \le i < 4$
- Two new witnesses z, z' and constraints

$$\begin{aligned} (x_4 2^{24} + x_3 2^{16} + x_2 2^8 + x_1) \cdot (x_8 2^{24} + x_7 2^{16} + x_6 2^8 + x_5 - z) &= 0\\ (z - 2^{32} + 1) \cdot z' &= 1 \end{aligned}$$

- Not required for output y
 - S-box ensures S(0x00) = 0x00 and S(0xFF) = 0xFF
 - \Rightarrow Every valid x leads to a valid y

Plonkish Performance

- Plonkish arithmetization
 - Monolith's crucial advantage: Low-degree round function

Primitive	Lookups	Non-linear constraints	Degree	Witness size	Area-degree product
Monolith-64-compression	192	48	2	644	1288
Monolith-64-sponge	192	72	2	696	1392
Tip5	160	60	7	440	3080
Tip4′	160	40	7	400	2800
Poseidon/Poseidon2	0	118	7	236	1652

Т∧с≣э

Benchmarks in Plonky2

- Poseidon vs. Monolith in sponge mode (t = 12)
 - Non-optimized custom gate using 1 row in Plonky2¹

Primitive	Prove Time	Verify Time	Proof Size	Plain Time
	<i>ms</i>	<i>ms</i>	<i>B</i>	<i>ns</i>
Monolith-64-sponge	3.49	0.63	112732	210.5
POSEIDON	6.23	1.12	70288	3288.7

Results:

Faster prover, verifier, plain hashing, and Merkle-tree generation (15x)
X Larger proof size

¹Using "Implement logUp" pull request https://github.com/mir-protocol/plonky2/pull/888

Conclusion

- New hash function Monolith
 - Efficient in plain and in proof systems
 - Plain performance comparable to SHA-3
 - Side-channel resistant and allows constant time implementations
- Design based on two different non-linear layers
 - Bricks: \mathbb{F}_p non-linear layer based on Feistel
 - Bars: Binary non-linear layer based on decomposition
- Currently fastest arithmetization friendly hash function
- Generalized description for other primes in paper

ТЛС≣Э

Links

- Paper:
 - https://ia.cr/2023/1025
- Plain hashing comparison:
 - https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/ master/plain_impls
- Plonky2:
 - https://github.com/HorizenLabs/monolith

Questions

Monolith: May the Speed of SHA-3 be With You

Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, Markus Schofnegger, **Roman Walch**

20.09.2023

Bibliography I

- [AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec. "Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols". In: IACR Trans. Symmetric Cryptol. 2020.3 (2020), pp. 1–45.
- [COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. "Fractal: Post-quantum and Transparent Recursive Proofs from Holography". In: EUROCRYPT (1). Vol. 12105. Lecture Notes in Computer Science. Springer, 2020, pp. 769–793.
- [GHR+22] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger, Roman Walch, and Qingju Wang. "Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications". In: IACR Cryptol. ePrint Arch. (2022), p. 403.
- [GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, Markus Schofnegger, and Roman Walch. "Reinforced Concrete: A Fast Hash Function for Verifiable Computation". In: CCS. ACM, 2022, pp. 1323–1335.
- [GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. "Poseidon: A New Hash Function for Zero-Knowledge Proof Systems". In: USENIX Security Symposium. USENIX Association, 2021, pp. 519–535.

ТЛСЕЭ

Bibliography II

- [GKS23] Lorenzo Grassi, Dmitry Khovratovich, and Markus Schofnegger. "Poseidon2: A Faster Version of the Poseidon Hash Function". In: AFRICACRYPT. Vol. 14064. Lecture Notes in Computer Science. Springer, 2023, pp. 177–203.
- [Pol22] Polygon. Plonky2: Fast Recursive Arguments with PLONK and FRI. 2022. URL: https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf (visited on 04/12/2023).
- [Pol23] Polygon. Plonky3. 2023. URL: https://github.com/Plonky3/Plonky3 (visited on 06/12/2023).
- [Sal23] Robin Salen. "Two additional instantiations from the Tip5 hash function construction". In: https://toposware.com/paper_tip5.pdf (2023).
- [SLST23] Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, and Bobbin Threadbare. "The Tip5 Hash Function for Recursive STARKs". In: IACR Cryptol. ePrint Arch. (2023), p. 107.

Т∧С≣Э

Bibliography III

[TBP20] Florian Tramèr, Dan Boneh, and Kenny Paterson. "Remote Side-Channel Attacks on Anonymous Transactions". In: USENIX Security Symposium. USENIX Association, 2020, pp. 2739–2756.